1.High-level production of glucose oxidase by recombinant Pichia pastoris using a combined strategy.
Qingxuan MU ; Meirong HU ; Fei CHEN ; Xianzhang JIANG ; Yong TAO ; Jianzhong HUANG
Chinese Journal of Biotechnology 2016;32(7):986-990
To enhance the production of glucose oxidase by recombinant Pichia pastoris, two strategies were developed, which were namely co-feeding of methanol and sorbitol and co-expressing of the protein disulfide isomerase (PDI) and Vitreoscialla hemoglobin (VHb). The volumetric activity reached 456 U/mL by using the strain X33/pPIC9k-GOD, in 5 liter fermentator, with the co-feeding of methanol and sorbitol, it was 0.2 fold higher than that only feeding by methanol. The improved strain was obtained by co-expressing PDI-VHb with GOD. While fermented in a 5 liter fermentator by feeding methanol and sorbitol, the activity of the improved strain reached 716 U/mL with a yield of 7 400 mg/L total soluble protein concentration. These results indicated that heterologous protein expression level can be enhanced by optimizing fermentation condition and co-expression molecular chaperon in Pichia pastoris.
Bioreactors
;
Fermentation
;
Glucose Oxidase
;
biosynthesis
;
Methanol
;
Pichia
;
metabolism
;
Recombinant Proteins
;
biosynthesis
;
Sorbitol
2.Metabolic regulation in constructing microbial cell factories.
Yang LIU ; Qingxuan MU ; Ya'nan SHI ; Bo YU
Chinese Journal of Biotechnology 2021;37(5):1541-1563
The regulation of the expression of genes involved in metabolic pathways, termed as metabolic regulation, is vital to construct efficient microbial cell factories. With the continuous breakthroughs in synthetic biology, the mining and artificial design of high-quality regulatory elements have substantially improved our ability to modify and regulate cellular metabolic networks and its activities. The research on metabolic regulation has also evolved from the static regulation of single genes to the intelligent and precise dynamic regulation at the systems level. This review briefly summarizes the advances of metabolic regulation technologies in the past 30 years.
Metabolic Engineering
;
Metabolic Networks and Pathways/genetics*
;
Synthetic Biology