Super-resolution image reconstruction techniques play an important role for improving image resolution of lung 4D-CT. We presents a super-resolution approach based on fast sub-pixel motion estimation to reconstruct lung 4D-CT images. A fast sub-pixel motion estimation method was used to estimate the deformation fields between "frames", and then iterative back projection (IBP) algorithm was employed to reconstruct high-resolution images. Experimental results showed that compared with traditional interpolation method and super-resolution reconstruction algorithm based on full search motion estimation, the proposed method produced clearer images with significantly enhanced image structure details and reduced time for computation.
Algorithms
;
Four-Dimensional Computed Tomography
;
Humans
;
Image Enhancement
;
Lung
;
anatomy & histology
;
Motion
;
Tomography, X-Ray Computed