1.Role of Innate Trained Immunity in Diseases
Chuang CHENG ; Yue-Qing WANG ; Xiao-Qin MU ; Xi ZHENG ; Jing HE ; Jun WANG ; Chao TAN ; Xiao-Wen LIU ; Li-Li ZOU
Progress in Biochemistry and Biophysics 2025;52(1):119-132
The innate immune system can be boosted in response to subsequent triggers by pre-exposure to microbes or microbial products, known as “trained immunity”. Compared to classical immune memory, innate trained immunity has several different features. Firstly, the molecules involved in trained immunity differ from those involved in classical immune memory. Innate trained immunity mainly involves innate immune cells (e.g., myeloid immune cells, natural killer cells, innate lymphoid cells) and their effector molecules (e.g., pattern recognition receptor (PRR), various cytokines), as well as some kinds of non-immune cells (e.g., microglial cells). Secondly, the increased responsiveness to secondary stimuli during innate trained immunity is not specific to a particular pathogen, but influences epigenetic reprogramming in the cell through signaling pathways, leading to the sustained changes in genes transcriptional process, which ultimately affects cellular physiology without permanent genetic changes (e.g., mutations or recombination). Finally, innate trained immunity relies on an altered functional state of innate immune cells that could persist for weeks to months after initial stimulus removal. An appropriate inducer could induce trained immunity in innate lymphocytes, such as exogenous stimulants (including vaccines) and endogenous stimulants, which was firstly discovered in bone marrow derived immune cells. However, mature bone marrow derived immune cells are short-lived cells, that may not be able to transmit memory phenotypes to their offspring and provide long-term protection. Therefore, trained immunity is more likely to be relied on long-lived cells, such as epithelial stem cells, mesenchymal stromal cells and non-immune cells such as fibroblasts. Epigenetic reprogramming is one of the key molecular mechanisms that induces trained immunity, including DNA modifications, non-coding RNAs, histone modifications and chromatin remodeling. In addition to epigenetic reprogramming, different cellular metabolic pathways are involved in the regulation of innate trained immunity, including aerobic glycolysis, glutamine catabolism, cholesterol metabolism and fatty acid synthesis, through a series of intracellular cascade responses triggered by the recognition of PRR specific ligands. In the view of evolutionary, trained immunity is beneficial in enhancing protection against secondary infections with an induction in the evolutionary protective process against infections. Therefore, innate trained immunity plays an important role in therapy against diseases such as tumors and infections, which has signature therapeutic effects in these diseases. In organ transplantation, trained immunity has been associated with acute rejection, which prolongs the survival of allografts. However, trained immunity is not always protective but pathological in some cases, and dysregulated trained immunity contributes to the development of inflammatory and autoimmune diseases. Trained immunity provides a novel form of immune memory, but when inappropriately activated, may lead to an attack on tissues, causing autoinflammation. In autoimmune diseases such as rheumatoid arthritis and atherosclerosis, trained immunity may lead to enhance inflammation and tissue lesion in diseased regions. In Alzheimer’s disease and Parkinson’s disease, trained immunity may lead to over-activation of microglial cells, triggering neuroinflammation even nerve injury. This paper summarizes the basis and mechanisms of innate trained immunity, including the different cell types involved, the impacts on diseases and the effects as a therapeutic strategy to provide novel ideas for different diseases.
2.Circadian and non-circadian regulation of the male reproductive system and reproductive damage: advances in the role and mechanisms of clock genes.
Meng-Chao HE ; Ying-Zhong DAI ; Yi-Meng WANG ; Qin-Ru LI ; Si-Wen LUO ; Xi LING ; Tong WANG ; Jia CAO ; Qing CHEN
Acta Physiologica Sinica 2025;77(4):712-720
Recently, male reproductive health has attracted extensive attention, with the adverse effects of circadian disruption on male fertility gradually gaining recognition. However, the mechanism by which circadian disruption leads to damage to male reproductive system remains unclear. In this review, we first summarized the dual regulatory roles of circadian clock genes on the male reproductive system: (1) circadian regulation of testosterone synthesis via the hypothalamic-pituitary-testicular (HPT) and hypothalamic-pituitary-adrenal (HPA) axes; (2) non-circadian regulation of spermatogenesis. Next, we further listed the possible mechanisms by which circadian disruption impairs male fertility, including interference with the oscillatory function of the reproductive system, i.e., synchronization of the HPT axis, crosstalk between the HPT axis and the HPA axis, as well as direct damage to germ cells by disturbing the non-oscillatory function of the reproductive system. Future research using spatiotemporal omics, epigenomic assays, and neural circuit mapping in studying the male reproductive system may provide new clues to systematically unravel the mechanisms by which circadian disruption affects male reproductive system through circadian clock genes.
Male
;
Humans
;
Animals
;
Circadian Clocks/physiology*
;
Hypothalamo-Hypophyseal System/physiology*
;
Circadian Rhythm/genetics*
;
Spermatogenesis/physiology*
;
Pituitary-Adrenal System/physiology*
;
Testis/physiology*
;
Testosterone/biosynthesis*
;
CLOCK Proteins
;
Infertility, Male/physiopathology*
3.Berg Balance Scale score is a valuable predictor of all-cause mortality among acute decompensated heart failure patients.
Yu-Xuan FAN ; Jing-Jing CHENG ; Zhi-Qing FAN ; Jing-Jin LIU ; Wen-Juan XIU ; Meng-Yi ZHAN ; Lin LUO ; Guang-He LI ; Le-Min WANG ; Yu-Qin SHEN
Journal of Geriatric Cardiology 2025;22(6):555-562
OBJECTIVE:
To investigate possible associations between physical function assessment scales, such as Short Physical Performance Battery (SPPB) and Berg Balance Scale (BBS), with all-cause mortality in acute decompensated heart failure (ADHF) patients.
METHODS:
A total of 108 ADHF patients were analyzed from October 2020 to October 2022, and followed up to May 2023. The association between baseline clinical characteristics and all-cause mortality was analyzed by univariate Cox regression analysis, while for SPPB and BBS, univariate Cox regression analysis was followed by receiver operating characteristic curves, in which the area under the curve represented their predictive accuracy for all-cause mortality. Incremental predictive values for both physical function assessments were measured by calculating net reclassification index and integrated discrimination improvement scores. Optimal cut-off value for BBS was then identified using restricted cubic spline plots, and survival differences below and above that cut-off were compared using Kaplan-Meier survival curves and the log-rank test. The clinical utility of BBS was measured using decision curve analysis.
RESULTS:
For baseline characteristics, age, female, blood urea nitrogen, as well as statins, angiotensin-converting enzyme inhibitors, angiotensin II receptor blockers, or angiotensin receptor-neprilysin inhibitors, were predictive for all-cause mortality for ADHF patients. With respect to SPPB and BBS, higher scores were associated with lower all-cause mortality rates for both assessments; similar area under the curves were measured for both (0.774 for SPPB and 0.776 for BBS). Furthermore, BBS ≤ 36.5 was associated with significantly higher mortality, which was still applicable even adjusting for confounding factors; BBS was also found to have great clinical utility under decision curve analysis.
CONCLUSIONS
BBS or SPPB could be used as tools to assess physical function in ageing ADHF patients, as well as prognosticate on all-cause mortality. Moreover, prioritizing the improvement of balance capabilities of ADHF patients in cardiac rehabilitation regimens could aid in lowering mortality risk.
4.CRTAC1 derived from senescent FLSs induces chondrocyte mitochondrial dysfunction via modulating NRF2/SIRT3 axis in osteoarthritis progression.
Xiang CHEN ; Wang GONG ; Pan ZHANG ; Chengzhi WANG ; Bin LIU ; Xiaoyan SHAO ; Yi HE ; Na LIU ; Jiaquan LIN ; Jianghui QIN ; Qing JIANG ; Baosheng GUO
Acta Pharmaceutica Sinica B 2025;15(11):5803-5816
Osteoarthritis (OA), the most prevalent joint disease of late life, is closely linked to cellular senescence. Previously, we found that the senescence of fibroblast-like synoviocytes (FLS) played an essential role in the degradation of cartilage. In this work, single-cell sequencing data further demonstrated that cartilage acidic protein 1 (CRTAC1) is a critical secreted factor of senescent FLS, which suppresses mitophagy and induces mitochondrial dysfunction by regulating SIRT3 expression. In vivo, deletion of SIRT3 in chondrocytes accelerated cartilage degradation and aggravated the progression of OA. Oppositely, intra-articular injection of adeno-associated virus expressing SIRT3 effectively alleviated OA progression in mice. Mechanistically, we demonstrated that elevated CRTAC1 could bind with NRF2 in chondrocytes, which subsequently suppresses the transcription of SIRT3 in vitro. In addition, SIRT3 reduction could promote the acetylation of FOXO3a and result in mitochondrial dysfunction, which finally contributes to the degradation of chondrocytes. To conclude, this work revealed the critical role and underlying mechanism of senescent FLSs-derived CRTAC1 in OA progression, which provided a potential strategy for the OA therapy.
5.Sirtuin 3 Attenuates Acute Lung Injury by Decreasing Ferroptosis and Inflammation through Inhibiting Aerobic Glycolysis.
Ke Wei QIN ; Qing Qing JI ; Wei Jun LUO ; Wen Qian LI ; Bing Bing HAO ; Hai Yan ZHENG ; Chao Feng HAN ; Jian LOU ; Li Ming ZHAO ; Xing Ying HE
Biomedical and Environmental Sciences 2025;38(9):1161-1167
6.Research on three-dimensional ordered porous carbon-based materials prepared from Acanthopanax senticosus traditional Chinese medicine residues and their drug loading performance
De-sheng WANG ; Jia-xin FAN ; Ri-qing CHENG ; Shi-kui WU ; Lai-bing WANG ; Jia-hao SHI ; Ting-ting CHEN ; Qin-fang HE ; Chang-jin XU ; Hui-qing GUO
Acta Pharmaceutica Sinica 2024;59(10):2857-2863
Three-dimensional ordered porous carbon materials exhibit potential application prospects as excellent drug supports in drug delivery systems due to their high specific surface area, tunable pore structure, and excellent biocompatibility. In this study, three-dimensional ordered porous carbon materials were prepared using
7.Tumor Therapy: Targeted Substances Metabolism Reprogramming Induces Tumor Ferroptosis
Jin-Ping ZHANG ; Yue-Qing WANG ; Mo WANG ; Xin-Yue WANG ; Xiao-Qin MOU ; Xi ZHENG ; Chuang CHENG ; Jing HE ; Li-Li ZOU ; Xiao-Wen LIU
Progress in Biochemistry and Biophysics 2024;51(7):1540-1550
There are huge differences between tumor cells and normal cells in material metabolism, and tumor cells mainly show increased anabolism, decreased catabolism, and imbalance in substance metabolism. These differences provide the necessary material basis for the growth and reproduction of tumor cells, and also provide important targets for the treatment of tumors. Ferroptosis is an iron-dependent form of cell death characterized by an imbalance of iron-dependent lipid peroxidation and lipid membrane antioxidant systems in cells, resulting in excessive accumulation of lipid peroxide, causing damage to lipid membrane structure and loss of function, and ultimately cell death. The regulation of ferroptosis involves a variety of metabolic pathways, including glucose metabolism, lipid metabolism, amino acid metabolism, nucleotide metabolism and iron metabolism. In order for tumor cells to grow rapidly, their metabolic needs are more vigorous than those of normal cells. Tumor cells are metabolically reprogrammed to meet their rapidly proliferating material and energy needs. Metabolic reprogramming is mainly manifested in glycolysis and enhancement of pentose phosphate pathway, enhanced glutamine metabolism, increased nucleic acid synthesis, and iron metabolism tends to retain more intracellular iron. Metabolic reprogramming is accompanied by the production of reactive oxygen species and the activation of the antioxidant system. The state of high oxidative stress makes tumor cells more susceptible to redox imbalances, causing intracellular lipid peroxidation, which ultimately leads to ferroptosis. Therefore, in-depth study of the molecular mechanism and metabolic basis of ferroptosis is conducive to the development of new therapies to induce ferroptosis in cancer treatment. Ferroptosis, as a regulated form of cell death, can induce ferroptosis in tumor cells by pharmacologically or genetically targeting the metabolism of substances in tumor cells, which has great potential value in tumor treatment. This article summarizes the effects of cellular metabolism on ferroptosis in order to find new targets for tumor treatment and provide new ideas for clinical treatment.
8.Analysis of the pre-metabolic disease state based on the theory of "overflow of Wu Qi"
Qing HE ; Zirong LI ; Qiaoli YANG ; Jing LIN ; Guangqi WANG ; Jin QIN ; Shangjian LIU
International Journal of Traditional Chinese Medicine 2024;46(3):278-282
The pre-metabolic disease state is the body state of substance metabolism disorder that has not yet reached the physical and chemical indicators of the disease, and abnormal glucose metabolism is often the key link of metabolic disorder. In TCM, the healthy function of the spleen is the cornerstone of the production and distribution of fine substances. This article discussed the pre-metabolic disease state based on the theory of "overflow of Five Qi" in the Nei Jing, taking the loss of spleen preparedness as the starting point, in order to provide new ideas and directions for the prevention and treatment of clinical metabolic diseases.
9.Effect of Ditan Decoction combined with aripiprazole and olanzapine in treatment of schizophrenia and its influence on serum inflammatory factors changes
Yumei HE ; Guorong XIE ; Qing YANG ; Dinglun DUAN ; Yue QIN ; Xinlong WANG ; Minggui LUO ; Fangyan DONG
Chongqing Medicine 2024;53(19):2970-2974,2980
Objective To study the effect of Ditan Decoction combined with aripiprazole and olanzapine in the treatment of schizophrenia and its influence on serum inflammatory factors chnage.Methods Seventy-seven patients with schizophrenia meeting the requirements visiting the outpatient department and hospitalized in Dazu District Hospital of Traditional Chinese Medicine and Dazu District Mental Health Center from July 2021 to March 2023 were selected as the study subjects and divided into the observation group(n=38)and control group(n=39).The control group was treated with aripiprazole and olanzapine,and the observation group was combined with Ditan Decoction on the basis of the control group.After 8 weeks of treatment,the TCM syndrome scores,Positive and Negative Syndrome Scale(PANSS)score,serum inflammatory factors(IL-6,IL-1β,IL-17)levels were compared between the two groups.Results The total effective rate was 97.37%in the observation group and 84.65%in the control group,and the difference was statistically signifi-cant(P<0.05).The TCM syndrome score of each item and total scores after treatment in the observation group were lower than those in the control group(P<0.05),the PANSS positive symptoms,negative symp-toms,general psychopathology and total scores in the observation group were lower than those in the control group(P<0.05).The IL-17,IL-6 and IL-1β levels after treatment in observation group were lower than those in the control group(P<0.05).Conclusion Ditan Decoction combined with aripiprazole and olanzapine has significant clinical efficacy in the treatment of schizophrenia,which could further reduce the symptom score of the patients and improve the serum inflammatory factors levels.The treatment is highly safe and worthy of clinical recommendation.
10.Advances in antitumor research of bifunctional small molecule inhibitors targeting heat shock protein 90
Hong-ping ZHU ; Xin XIE ; Rui QIN ; Wei HUANG ; Yan-qing LIU ; Cheng PENG ; Gu HE ; Bo HAN
Acta Pharmaceutica Sinica 2024;59(1):1-16
The heat shock protein 90 (Hsp90) protein family is a cluster of highly conserved molecules that play an important role in maintaining cellular homeostasis. Hsp90 and its co-chaperones regulate a variety of pathways and cellular functions, such as cell growth, cell cycle control and apoptosis. Hsp90 is closely associated with the occurrence and development of tumors and other diseases, making it an attractive target for cancer therapeutics. Inhibition of Hsp90 expression can affect multiple oncogenic pathways simultaneously. Most Hsp90 small molecule inhibitors are in clinical trials due to their low efficacy, toxicity or drug resistance, but they have obvious synergistic anti-tumor effect when used with histone deacetylase (HDAC) inhibitors, tubulin inhibitors or topoisomerase II (Topo II) inhibitors. To address this issue, the design of Hsp90 dual-target inhibitors can improve efficacy and reduce drug resistance, making it an effective tumor treatment strategy. In this paper, the domain and biological function of Hsp90 are briefly introduced, and the design, discovery and structure-activity relationship of Hsp90 dual inhibitors are discussed, in order to provide reference for the discovery of novel Hsp90 dual inhibitors and clinical drug research from the perspective of medicinal chemistry.

Result Analysis
Print
Save
E-mail