1.Update on the treatment navigation for functional cure of chronic hepatitis B: Expert consensus 2.0
Di WU ; Jia-Horng KAO ; Teerha PIRATVISUTH ; Xiaojing WANG ; Patrick T.F. KENNEDY ; Motoyuki OTSUKA ; Sang Hoon AHN ; Yasuhito TANAKA ; Guiqiang WANG ; Zhenghong YUAN ; Wenhui LI ; Young-Suk LIM ; Junqi NIU ; Fengmin LU ; Wenhong ZHANG ; Zhiliang GAO ; Apichat KAEWDECH ; Meifang HAN ; Weiming YAN ; Hong REN ; Peng HU ; Sainan SHU ; Paul Yien KWO ; Fu-sheng WANG ; Man-Fung YUEN ; Qin NING
Clinical and Molecular Hepatology 2025;31(Suppl):S134-S164
As new evidence emerges, treatment strategies toward the functional cure of chronic hepatitis B are evolving. In 2019, a panel of national hepatologists published a Consensus Statement on the functional cure of chronic hepatitis B. Currently, an international group of hepatologists has been assembled to evaluate research since the publication of the original consensus, and to collaboratively develop the updated statements. The 2.0 Consensus was aimed to update the original consensus with the latest available studies, and provide a comprehensive overview of the current relevant scientific literatures regarding functional cure of hepatitis B, with a particular focus on issues that are not yet fully clarified. These cover the definition of functional cure of hepatitis B, its mechanisms and barriers, the effective strategies and treatment roadmap to achieve this endpoint, in particular new surrogate biomarkers used to measure efficacy or to predict response, and the appropriate approach to pursuing a functional cure in special populations, the development of emerging antivirals and immunomodulators with potential for curing hepatitis B. The statements are primarily intended to offer international guidance for clinicians in their practice to enhance the functional cure rate of chronic hepatitis B.
2.Update on the treatment navigation for functional cure of chronic hepatitis B: Expert consensus 2.0
Di WU ; Jia-Horng KAO ; Teerha PIRATVISUTH ; Xiaojing WANG ; Patrick T.F. KENNEDY ; Motoyuki OTSUKA ; Sang Hoon AHN ; Yasuhito TANAKA ; Guiqiang WANG ; Zhenghong YUAN ; Wenhui LI ; Young-Suk LIM ; Junqi NIU ; Fengmin LU ; Wenhong ZHANG ; Zhiliang GAO ; Apichat KAEWDECH ; Meifang HAN ; Weiming YAN ; Hong REN ; Peng HU ; Sainan SHU ; Paul Yien KWO ; Fu-sheng WANG ; Man-Fung YUEN ; Qin NING
Clinical and Molecular Hepatology 2025;31(Suppl):S134-S164
As new evidence emerges, treatment strategies toward the functional cure of chronic hepatitis B are evolving. In 2019, a panel of national hepatologists published a Consensus Statement on the functional cure of chronic hepatitis B. Currently, an international group of hepatologists has been assembled to evaluate research since the publication of the original consensus, and to collaboratively develop the updated statements. The 2.0 Consensus was aimed to update the original consensus with the latest available studies, and provide a comprehensive overview of the current relevant scientific literatures regarding functional cure of hepatitis B, with a particular focus on issues that are not yet fully clarified. These cover the definition of functional cure of hepatitis B, its mechanisms and barriers, the effective strategies and treatment roadmap to achieve this endpoint, in particular new surrogate biomarkers used to measure efficacy or to predict response, and the appropriate approach to pursuing a functional cure in special populations, the development of emerging antivirals and immunomodulators with potential for curing hepatitis B. The statements are primarily intended to offer international guidance for clinicians in their practice to enhance the functional cure rate of chronic hepatitis B.
3.Update on the treatment navigation for functional cure of chronic hepatitis B: Expert consensus 2.0
Di WU ; Jia-Horng KAO ; Teerha PIRATVISUTH ; Xiaojing WANG ; Patrick T.F. KENNEDY ; Motoyuki OTSUKA ; Sang Hoon AHN ; Yasuhito TANAKA ; Guiqiang WANG ; Zhenghong YUAN ; Wenhui LI ; Young-Suk LIM ; Junqi NIU ; Fengmin LU ; Wenhong ZHANG ; Zhiliang GAO ; Apichat KAEWDECH ; Meifang HAN ; Weiming YAN ; Hong REN ; Peng HU ; Sainan SHU ; Paul Yien KWO ; Fu-sheng WANG ; Man-Fung YUEN ; Qin NING
Clinical and Molecular Hepatology 2025;31(Suppl):S134-S164
As new evidence emerges, treatment strategies toward the functional cure of chronic hepatitis B are evolving. In 2019, a panel of national hepatologists published a Consensus Statement on the functional cure of chronic hepatitis B. Currently, an international group of hepatologists has been assembled to evaluate research since the publication of the original consensus, and to collaboratively develop the updated statements. The 2.0 Consensus was aimed to update the original consensus with the latest available studies, and provide a comprehensive overview of the current relevant scientific literatures regarding functional cure of hepatitis B, with a particular focus on issues that are not yet fully clarified. These cover the definition of functional cure of hepatitis B, its mechanisms and barriers, the effective strategies and treatment roadmap to achieve this endpoint, in particular new surrogate biomarkers used to measure efficacy or to predict response, and the appropriate approach to pursuing a functional cure in special populations, the development of emerging antivirals and immunomodulators with potential for curing hepatitis B. The statements are primarily intended to offer international guidance for clinicians in their practice to enhance the functional cure rate of chronic hepatitis B.
4.Assessment of genetic associations between antidepressant drug targets and various stroke subtypes: A Mendelian randomization approach.
Luyang ZHANG ; Yunhui CHU ; Man CHEN ; Yue TANG ; Xiaowei PANG ; Luoqi ZHOU ; Sheng YANG ; Minghao DONG ; Jun XIAO ; Ke SHANG ; Gang DENG ; Wei WANG ; Chuan QIN ; Daishi TIAN
Chinese Medical Journal 2025;138(4):487-489
5.Burden of congenital birth defects in children under five in China from 1990 to 2021 and prediction of future trend.
Bing-Yi HUANG ; Qin ZHAO ; Dan-Li PENG ; Man-Yi WANG ; Qian-Wen ZHAO
Chinese Journal of Contemporary Pediatrics 2025;27(3):347-353
OBJECTIVES:
To study the incidence and disease burden of congenital birth defects in children under five in China from 1990 to 2021 and to predict the incidence of congenital birth defects in this population from 2022 to 2036, providing a reference for the prevention of congenital birth defects in children.
METHODS:
Using the Global Burden of Disease Study 2021 (GBD 2021) database, the incidence and disability-adjusted life years (DALY) were employed to describe the disease burden. The Joinpoint regression model was used to analyze the trends in incidence and DALY rates of congenital birth defects in children under five. A grey prediction model GM(1,1) was applied to fit the trend of incidence rates of congenital birth defects in this age group and to predict the incidence from 2022 to 2036.
RESULTS:
In 2021, the incidence rate of congenital birth defects among children under five in China was 737.28 per 100 000. Among these, congenital musculoskeletal and limb deformities had the highest incidence rate at 307.15 per 100 000, followed by congenital heart defects (223.53 per 100 000), congenital urinary and genital tract malformations (74.99 per 100 000), and congenital gastrointestinal malformations (62.61 per 100 000). From 1990 to 2021, the incidence rate and DALY rate of congenital birth defects in children under five in China decreased at an average annual rate of 1.73% and 5.42%, respectively. The prediction analysis indicated a decreasing trend in the incidence of congenital birth defects among children under five in China from 2022 to 2036, with the incidence rate dropping from 892.36 per 100 000 in 2022 to 783.35 per 100 000 in 2036.
CONCLUSIONS
The incidence and disease burden of congenital birth defects in children under five in China showed a significant declining trend from 1990 to 2021. It is predicted that this incidence will continue to decrease until 2036.
Humans
;
Congenital Abnormalities/epidemiology*
;
China/epidemiology*
;
Incidence
;
Infant
;
Infant, Newborn
;
Child, Preschool
;
Female
;
Male
;
Forecasting
;
Disability-Adjusted Life Years
6.Qishen Granules Modulate Metabolism Flexibility Against Myocardial Infarction via HIF-1 α-Dependent Mechanisms in Rats.
Xiao-Qian SUN ; Xuan LI ; Yan-Qin LI ; Xiang-Yu LU ; Xiang-Ning LIU ; Ling-Wen CUI ; Gang WANG ; Man ZHANG ; Chun LI ; Wei WANG
Chinese journal of integrative medicine 2025;31(3):215-227
OBJECTIVE:
To assess the cardioprotective effect and impact of Qishen Granules (QSG) on different ischemic areas of the myocardium in heart failure (HF) rats by evaluating its metabolic pattern, substrate utilization, and mechanistic modulation.
METHODS:
In vivo, echocardiography and histology were used to assess rat cardiac function; positron emission tomography was performed to assess the abundance of glucose metabolism in the ischemic border and remote areas of the heart; fatty acid metabolism and ATP production levels were assessed by hematologic and biochemical analyses. The above experiments evaluated the cardioprotective effect of QSG on left anterior descending ligation-induced HF in rats and the mode of energy metabolism modulation. In vitro, a hypoxia-induced H9C2 model was established, mitochondrial damage was evaluated by flow cytometry, and nuclear translocation of hypoxia-inducible factor-1 α (HIF-1 α) was observed by immunofluorescence to assess the mechanism of energy metabolism regulation by QSG in hypoxic and normoxia conditions.
RESULTS:
QSG regulated the pattern of glucose and fatty acid metabolism in the border and remote areas of the heart via the HIF-1 α pathway, and improved cardiac function in HF rats. Specifically, QSG promoted HIF-1 α expression and entry into the nucleus at high levels of hypoxia (P<0.05), thereby promoting increased compensatory glucose metabolism; while reducing nuclear accumulation of HIF-1 α at relatively low levels of hypoxia (P<0.05), promoting the increased lipid metabolism.
CONCLUSIONS
QSG regulates the protein stability of HIF-1 α, thereby coordinating energy supply balance between the ischemic border and remote areas of the myocardium. This alleviates the energy metabolism disorder caused by ischemic injury.
Animals
;
Myocardial Infarction/physiopathology*
;
Male
;
Hypoxia-Inducible Factor 1, alpha Subunit/metabolism*
;
Rats, Sprague-Dawley
;
Glucose/metabolism*
;
Drugs, Chinese Herbal/therapeutic use*
;
Energy Metabolism/drug effects*
;
Rats
;
Fatty Acids/metabolism*
;
Myocardium/pathology*
7.Identification of Atrial Fibrillation-related Inflammatory Genes and Their Association with Immune Cell Infiltration Based on Comprehensive Bioinformatic Analysis
Man YANG ; Xingan ZHAO ; Yunna GE ; Juan QIN ; Xiya WANG ; Siming TAO
Journal of Kunming Medical University 2024;45(3):18-29
Objective To identify inflammation-related genes in atrial fibrillation(AF)and explore the possible role and mechanism of these genes and infiltrating immune cells in the development of AF.Methods A series of bioinformatics analysis combined with machine learning algorithms to identify biomarkers of AF,the receiver operating characteristic(ROC)curves were used to verify the prediction and diagnostic value of key genes,and Spearman correlation analysis was used to clarify the correlation between key genes and infiltrating immune cells.Results 593 differential genes(| log2(fold change,FC)|>1,P<0.05),7 immune cell subtypes(P<0.05)were selected,190 immune-related differential genes were obtained,3 biomarkers(IGF1,PTGS 2 and PPARG),and the correlation analysis showed that 3 markers were significantly associated with infiltrating immune cells(P<0.05).Conclusion IGF1,PTGS2 and PPARG are inflammation-related genes of AF,which are speculated to be closely related to the process and pathway of immune cell infiltration.
8.Establishment of HPLC characteristic chromatogram and quantitative transmission laws for Baqi Rougan Decoction reference sample
Sai-Long GENG ; Qin ZHOU ; Shui-Gen SUN ; Man LI ; Li-Jie ZHAO ; Ji-Quan ZHANG ; Yi FENG
Chinese Traditional Patent Medicine 2024;46(2):370-378
AIM To establish the HPLC characteristic chromatogram of Baqi Rougan Decoction reference sample,and to investigate its quantitative transmission laws.METHODS The contents of calycosin 7-O-glucoside,hesperidin,rosmarinic acid,curcumenol and nystose were determined.The transfer rates of decoction piece-aqueous decoction-reference sample were calculated,after which the paste-forming rate and pH value were recorded.RESULTS There were sixteen characteristic peaks in fifteen batches of reference samples with the similarities of 0.90,nine of which were identified.The average transfer rates of nystose and calycosin 7-O-glucoside in the reference sample were(83.14±6.25)%and(77.81±8.31)%,while those of rosmarinic acid and curcumenol in the aqueous decoction-reference sample were(81.71±6.27)%and(72.16±5.91)%,along with the average paste-forming rate and pH value of(38.91%±1.46%)and 5.13±0.08,respectively.CONCLUSION This stable and feasible method can provide a reference for the selection of preparation process and evaluation of key chemical properties for Baqi Rougan Decoction.
9.Monotropein Induced Apoptosis and Suppressed Cell Cycle Progression in Colorectal Cancer Cells.
Quan GAO ; Lin LI ; Qi-Man ZHANG ; Qin-Song SHENG ; Ji-Liang ZHANG ; Li-Jun JIN ; Rui-Yan SHANG
Chinese journal of integrative medicine 2024;30(1):25-33
OBJECTIVE:
To determine whether monotropein has an anticancer effect and explore its potential mechanisms against colorectal cancer (CRC) through network pharmacology and molecular docking combined with experimental verification.
METHODS:
Network pharmacology and molecular docking were used to predict potential targets of monotropein against CRC. Cell counting kit assay, plate monoclonal assay and microscopic observation were used to investigate the antiproliferative effects of monotropein on CRC cells HCT116, HT29 and LoVo. Flow cytometry and scratch assay were used to analyze apoptosis and cell cycle, as well as cell migration, respectively in HCT116, HT29, and LoVo cells. Western blotting was used to detect the expression of proteins related to apoptosis, cell cycle, and cell migration, and the expression of proteins key to the Akt pathway.
RESULTS:
The Gene Ontology and Reactome enrichment analyses indicated that the anticancer potential of monotropein against CRC might be involved in multiple cancer-related signaling pathways. Among these pathways, RAC-beta serine/threonine-protein kinase (Akt1, Akt2), cyclin-dependent kinase 6 (CDK6), matrix metalloproteinase-9 (MMP9), epidermal growth factor receptor (EGFR), cell division control protein 42 homolog (CDC42) were shown as the potential anticancer targets of monotropein against CRC. Molecular docking suggested that monotropein may interact with the 6 targets (Akt1, Akt2, CDK6, MMP9, EGFR, CDC42). Subsequently, cell activity of HCT116, HT29 and LoVo cell lines were significantly suppressed by monotropein (P<0.05). Furthermore, our research revealed that monotropein induced cell apoptosis by inhibiting Bcl-2 and increasing Bax, induced G1-S cycle arrest in colorectal cancer by decreasing the expressions of CyclinD1, CDK4 and CDK6, inhibited cell migration by suppressing the expressions of CDC42 and MMP9 (P<0.05), and might play an anticancer role through Akt signaling pathway.
CONCLUSION
Monotropein exerts its antitumor effects primarily by arresting the cell cycle, causing cell apoptosis, and inhibiting cell migration. This indicates a high potential for developing novel medication for treating CRC.
Humans
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Cell Proliferation
;
Matrix Metalloproteinase 9
;
Molecular Docking Simulation
;
Cell Cycle
;
ErbB Receptors
;
Apoptosis
;
Colorectal Neoplasms/pathology*
;
Cell Line, Tumor
10.Specific DNA barcodes screening, germplasm resource identification, and genetic diversity analysis of Platycodon grandiflorum
Xin WANG ; Yue SHI ; Jin-hui MAN ; Yu-ying HUANG ; Xiao-qin ZHANG ; Ke-lu AN ; Gao-jie HE ; Zi-qi LIU ; Fan-yuan GUAN ; Yu-yan ZHENG ; Xiao-hui WANG ; Sheng-li WEI
Acta Pharmaceutica Sinica 2024;59(1):243-252
Platycodonis Radix is the dry root of

Result Analysis
Print
Save
E-mail