1.Development and validation of a prediction score for subtype diagnosis of primary aldosteronism.
Ping LIU ; Wei ZHANG ; Jiao WANG ; Hongfei JI ; Haibin WANG ; Lin ZHAO ; Jinbo HU ; Hang SHEN ; Yi LI ; Chunhua SONG ; Feng GUO ; Xiaojun MA ; Qingzhu WANG ; Zhankui JIA ; Xuepei ZHANG ; Mingwei SHAO ; Yi SONG ; Xunjie FAN ; Yuanyuan LUO ; Fangyi WEI ; Xiaotong WANG ; Yanyan ZHAO ; Guijun QIN
Chinese Medical Journal 2025;138(23):3206-3208
2.Three-dimensional printed scaffolds with sodium alginate/chitosan/mineralized collagen for promoting osteogenic differentiation.
Bo YANG ; Xiaojie LIAN ; Haonan FENG ; Tingwei QIN ; Song LYU ; Zehua LIU ; Tong FU
Journal of Biomedical Engineering 2025;42(5):1036-1045
The three-dimensional (3D) printed bone tissue repair guide scaffold is considered a promising method for treating bone defect repair. In this experiment, chitosan (CS), sodium alginate (SA), and mineralized collagen (MC) were combined and 3D printed to form scaffolds. The experimental results showed that the printability of the scaffold was improved with the increase of chitosan concentration. Infrared spectroscopy analysis confirmed that the scaffold formed a cross-linked network through electrostatic interaction between chitosan and sodium alginate under acidic conditions, and X-ray diffraction results showed the presence of characteristic peaks of hydroxyapatite, indicating the incorporation of mineralized collagen into the scaffold system. In the in vitro collagen release experiments, a weakly alkaline environment was found to accelerate the release rate of collagen, and the release amount increased significantly with a lower concentration of chitosan. Cell experiments showed that scaffolds loaded with mineralized collagen could significantly promote cell proliferation activity and alkaline phosphatase expression. The subcutaneous implantation experiment further verified the biocompatibility of the material, and the implantation of printed scaffolds did not cause significant inflammatory reactions. Histological analysis showed no abnormal pathological changes in the surrounding tissues. Therefore, incorporating mineralized collagen into sodium alginate/chitosan scaffolds is believed to be a new tissue engineering and regeneration strategy for achieving enhanced osteogenic differentiation through the slow release of collagen.
Chitosan/chemistry*
;
Alginates/chemistry*
;
Tissue Scaffolds/chemistry*
;
Printing, Three-Dimensional
;
Osteogenesis
;
Collagen/chemistry*
;
Cell Differentiation
;
Animals
;
Tissue Engineering/methods*
;
Cell Proliferation
;
Biocompatible Materials
;
Glucuronic Acid/chemistry*
;
Hexuronic Acids/chemistry*
3.Association between Per and Polyfluoroalkyl Substance and Abdominal Fat Distribution: A Trait Spectrum Exposure Pattern and Structure-Based Investigation.
Zhi LI ; Shi Lin SHAN ; Chen Yang SONG ; Cheng Zhe TAO ; Hong QIAN ; Qin YUAN ; Yan ZHANG ; Qiao Qiao XU ; Yu Feng QIN ; Yun FAN ; Chun Cheng LU
Biomedical and Environmental Sciences 2025;38(1):3-14
OBJECTIVE:
To investigate the associations between eight serum per- and polyfluoroalkyl substances (PFASs) and regional fat depots, we analyzed the data from the National Health and Nutrition Examination Survey (NHANES) 2011-2018 cycles.
METHODS:
Multiple linear regression models were developed to explore the associations between serum PFAS concentrations and six fat compositions along with a fat distribution score created by summing the concentrations of the six fat compositions. The associations between structurally grouped PFASs and fat distribution were assessed, and a prediction model was developed to estimate the ability of PFAS exposure to predict obesity risk.
RESULTS:
Among females aged 39-59 years, trunk fat mass was positively associated with perfluorooctane sulfonate (PFOS). Higher concentrations of PFOS, perfluorohexane sulfonate (PFHxS), perfluorodecanoate (PFDeA), perfluorononanoate (PFNA), and n-perfluorooctanoate (n-PFOA) were linked to greater visceral adipose tissue in this group. In men, exposure to total perfluoroalkane sulfonates (PFSAs) and long-chain PFSAs was associated with reductions in abdominal fat, while higher abdominal fat in women aged 39-59 years was associated with short-chain PFSAs. The prediction model demonstrated high accuracy, with an area under the curve (AUC) of 0.9925 for predicting obesity risk.
CONCLUSION
PFAS exposure is associated with regional fat distribution, with varying effects based on age, sex, and PFAS structure. The findings highlight the potential role of PFAS exposure in influencing fat depots and obesity risk, with significant implications for public health. The prediction model provides a highly accurate tool for assessing obesity risk related to PFAS exposure.
Humans
;
Fluorocarbons/blood*
;
Female
;
Adult
;
Middle Aged
;
Male
;
Environmental Pollutants/blood*
;
Abdominal Fat
;
Nutrition Surveys
;
Alkanesulfonic Acids/blood*
;
Obesity
;
Environmental Exposure
4.Research Progress in the Function and Regulation of Sirtuin 3 in Sepsis-Related Diseases.
Jun-Jie LI ; Hong MEI ; Xin-Xin LIU ; Kun YU ; Bang-Hai FENG ; Bao FU ; Song QIN
Acta Academiae Medicinae Sinicae 2025;47(4):601-610
Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection,with a high mortality rate.Sirtuin 3,a deacetylase within mitochondria,plays an important regulatory role in cellular metabolism,oxidative stress,and inflammatory responses.In recent years,significant progress has been made in the study of the function and regulatory role of sirtuin 3 in sepsis-related diseases.Research has shown that sirtuin 3 can alleviate organ damage caused by sepsis by regulating mitochondrial function,reducing oxidative stress,and inhibiting inflammatory responses.The specific mechanisms include the regulation of mitochondrial bioenergetics,activation of antioxidant enzyme systems,and inhibition of inflammatory mediator expression.In addition,sirtuin 3 plays a protective role in the pathological process of sepsis by interacting with multiple signaling pathways.This article summarizes the functions and regulatory mechanisms of sirtuin 3 in various sepsis-related diseases,aiming to provide new targets and strategies for the prevention and treatment of sepsis in the future.
Sepsis/metabolism*
;
Sirtuin 3/physiology*
;
Humans
;
Animals
;
Oxidative Stress
;
Mitochondria/metabolism*
;
Signal Transduction
5.LIU Min's Experience in Treating Hashimoto's Thyroiditis from the Pathogenesis of Gallbladder Constraint Failing to Descend and Insufficient Heart-Qi
Zhi-Xuan SONG ; Lu-Yao LIU ; Xian-Feng QIN ; Min LIU
Journal of Guangzhou University of Traditional Chinese Medicine 2024;41(9):2457-2461
Hashimoto's thyroiditis(HT)is a common endocrine disease,which can be classified into the category of goiter disease in traditional Chinese medicine.Professor LIU Min believes that the pathogenesis of HT is closely related to the heart and gallbladder,and its pathogenesis is due to the gallbladder constraint failing to descend and the disturbance of pivot,together with insufficient heart-qi and the disharmony between the nutritive qi and the defensive qi.For the treatment of HT,the modified Chaihu Guizhi Decoction is often used,which is mainly composed of Bupleuri Radix,Cinnamomi Ramulus,Scutellariae Radix,Pinelliae Rhizoma Praeparatum,Ginseng Radix et Rhizoma Rubra,Glycyrrhizae Radix et Rhizoma Praeparata cum Melle,Jujubae Fructus,Paeoniae Radix Alba,Os Draconis,Ostreae Concha,and Zingiberis Rhizoma Recens.Chaihu Guizhi Decoction has the actions of soothing gallbladder and relieving depression,restoring the function of shaoyang pivot,regulating nutritive qi and the defensive qi,and benefiting heart spirit,which exactly accords with the HT's pathogenesis of gallbladder constraint failing to descend and insufficient heart-qi.In the clinical treatment of HT,the modification of the drugs should be performed according to the concurrent syndromes of the patients,and the dosage of the drugs should also be adjusted.In addition to drug treatment,the attention should also be addressed to the adjustment of patients'lifestyle and dietary habits and to the emotional counseling,thus to achieve significant effect.
6.Neuromuscular electrical stimulation promoting the recovery of motor function in mice after spinal cord injury by regulating interleukin-6/signal transducer and activator of transcription-3 signaling pathway
Jian-Feng QIN ; Hai-Wang SONG ; Bao-Fei SUN ; Yang-Dan JI ; Si-Fang LONG ; Dan YANG
Acta Anatomica Sinica 2024;55(3):260-267
Objective To observe the effect of neuromuscular electrical stimulation(NMES)on interleukin-6(IL-6)/STAT3 signaling pathway in mice after spinal cord injury,and to explore the mechanism of its effect on motor function recovery.Methods Seventy-two SPF grade mice were randomly divided into sham operation group,spinal cord injury(SCI)group and NMES group.BMS score,inclined plane test and neuromuscular electrophysiology(EMG)were used to evaluate the recovery of spinal cord injury in mice.Western blotting and Real-time PCR were used to detect the expression of inflammatory factors,IL-6/STAT3,glial fibrillary acidic protein(GFAP)and brain-derived neurotrophic factor(BDNF)in spinal cord tissues of three groups of mice.HE staining was used to observe the pathological changes of spinal cord injury.Results BMS scores and the inclined plane test of mice in the NMES group were higher than those in SCI group(P<0.05).The maximum amplitude of motor evoked potential in NMES group was higher than that in SCI group(P<0.05).The expressions of TNF-α,IL-12A and GFAP in the spinal cord of NMES group were lower than that of SCI group(P<0.05),while the expressions of TGF-β,IL-10 and BDNF were higher than that of SCI group(P<0.05).The protein expressions of IL-6/STAT3 signaling pathway of NMES group were lower than that of SCI group(P<0.05).Conclusion Neuromuscular electrical stimulation plays an anti-inflammatory role by inhibiting the IL-6/STAT3 signaling pathway,thereby promoting the recovery of hind limb motor function in mice after spinal cord injury.
7.MDM2 regulates H 2O 2 induced alveolar type II epithelial cell injury through p53/Bcl-2/Bax axis
Jie ZHENG ; Bowen CHEN ; Hong MEI ; Xinxin LIU ; Zhenliang LIAO ; Kun YU ; Hong YU ; Banghai FENG ; Miao CHEN ; Xiaoyun FU ; Song QIN
Chinese Journal of Emergency Medicine 2024;33(8):1110-1116
Objective:To explore the function of MDM2 and its relationship with p53 at the cellular level during H 2O 2 induced oxidative damage. Methods:MLE-12 HALI cell models were established using 0.5 mmol/L H 2O 2, and were divided into three groups: normal control group, H 2O 2 injury group, H 2O 2+MDM2 overexpressed group, and H 2O 2+MDM2 shRNA group. Infection of MLE-12 cells with adenovirus vector overexpressing and silencing MDM2; Using immunoprecipitation (Co-IP) to analyze the interaction between MDM2 and p53; Western blotting was used to detect the protein expression levels of MDM2, p53, Bcl-2, Bax, and cleared caspase-3 after HALI modeling; Measure the apoptosis rate of cells in each group. Results:After transcriptome sequencing,the p53 signaling pathway closely related to HALI. Compared with the normal group, the expression of MDM2 in the H 2O 2 injury group was lower ( P<0.05); Compared with the H 2O 2 injury group, overexpression of MDM2 resulted in a decrease in the apoptosis rate of MLE-12 cells ( P<0.05), a decrease in the expression levels of p53, Bax, and cleared caspase-3 proteins, and an upregulation of MDM2 and Bcl-2 protein expression ( P<0.05). Compared with the H 2O 2 injury group, when MDM2 was silenced, the cell apoptosis rate increased ( P<0.05), and the expression levels of p53, Bax, and cleared caspase-3 proteins were upregulated, while the expression levels of MDM2 and Bcl-2 proteins decreased ( P<0.05). Co-IP experiments showed that MDM2 binds to p53 protein. Conclusions:MDM2 can exert a protective effect on HALI by inhibiting MLE-12 cell apoptosis through the p53/Bcl-2/Bax axis.
8.Expert consensus on standardized clinical applications of minimally invasive tooth extraction techniques
Bo JIA ; Qin WANG ; Jun CHEN ; Guangsen ZHENG ; Song FAN ; Qingsong YE ; Yan HE ; Fugui ZHANG ; Yadong WU ; Feng LIU ; Kexiong OUYANG ; Leitao ZHANG ; Xiaozhi LV ; Jianjiang ZHAO
Journal of Southern Medical University 2024;44(5):1004-1014
Tooth extraction is a common and widely employed therapeutic procedure in oral and maxillofacial surgery.Minimally invasive tooth extraction can reduce both physical and psychological trauma to the patients,and is widely recommended as a first-line clinical treatment.But currently no guidelines or consensus has been available to provide a systematic introduction of minimally invasive tooth extraction to guide the clinical practices.To address this issue,this consensus,based on a comprehensive literature review and clinical experiences of experts,systematically summarizes the indications,target patients,and contraindications of minimally invasive tooth extraction,the overall workflow of this procedure(preoperative preparation,surgical steps,postoperative management,postoperative instructions,medications,and follow-up),and its common postoperative complications to provide a comprehensive guidance for clinical application of this technique.
9.A New Multifunctional Biosensor Based on a Hairpin Oligonucleotide Probe and G-Quadruplex/Hemin DNAzyme
Lei WANG ; Ji-Xiang SONG ; Xing-Feng LIU ; Yan-Qin HUANG ; Qu-Li FAN
Chinese Journal of Analytical Chemistry 2024;52(8):1123-1131
A new multifunctional fluorescent"turn-on"biosensor was constructed based on a guanine-rich hairpin probe and G-quadruplex/hemin DNAzyme.The probe was labeled with quencher and fluorescein at 5′and 3′terminus,respectively.In the absence of the target,the probe form hairpin structure and the fluorescence of the fluorescein was quenched by the quencher.However,in the presence of the target,the hairpin structure transformed to G-quadruplex and the fluorescence was recovered.By monitoring the fluorescence of the probe before and after combining with the target,both hemin and hemoglobin were detected rapidly and conveniently with high sensitivity.The limit of detection for hemin and hemoglobin were estimated to be 283 pmol/L and 109 pmol/L,respectively.The specific interaction between the DNA probe and hemin were investigated via absorption and fluorescence spectra.Furthermore,L-cysteine was detected with naked eyes based on the peroxidase-like activity of the new G-quadruplex/hemin DNAzyme.The limit of detection for L-cysteine was estimated to be 3.6 μmol/L,which was lower than the normal level of intracellular L-cysteine(30-200 μmol/L).The method developed here was rapid,simple and sensitive for detection of hemin,hemoglobin and L-cysteine,demonstrating great potential in bioanalysis,drug screening,and disease diagnosis.
10.Investigation on the signaling pathways in the mechanism of hyperoxia-induced acute lung injury based on transcriptomics sequencing
Song QIN ; Xiaoqin WANG ; Yingcong REN ; Banghai FENG ; Junya LIU ; Hong YU ; Jie ZHENG ; Huajun CHEN ; Zhouxiong XING ; Hong MEI
Chinese Critical Care Medicine 2024;36(1):33-39
Objective:To observe and verify the changes of transcriptome in hyperoxia-induced acute lung injury (HALI), and to further clarify the changes of pathways in HALI.Methods:Twelve healthy male C57BL/6J mice were randomly divided into normoxia group and HALI group according to the random number table, with 6 mice in each group. The mice in the normoxia group were fed normally in the room, and the mice in the HALI group was exposed to 95% oxygen to reproduce the HALI animal model. After 72 hours of hyperoxia exposure, the lung tissues were taken for transcriptome sequencing, and then Kyoto Encyclopedia of Genes and Genomes database (KEGG) pathway enrichment analysis was performed. The pathological changes of lung tissue were observed under light microscope after hematoxylin-eosin (HE) staining. Real-time fluorescence quantitative reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting were used to verify the key molecules in the signal pathways closely related to HALI identified by transcriptomics analysis.Results:Transcriptomic analysis showed that hyperoxia induced 537 differentially expressed genes in lung tissue of mice as compared with the normoxia group including 239 up-regulated genes and 298 down-regulated genes. Further KEGG pathway enrichment analysis identified 20 most significantly enriched pathway entries, and the top three pathways were ferroptosis signaling pathway, p53 signaling pathway and glutathione (GSH) metabolism signaling pathway. The related genes in the ferroptosis signaling pathway included the up-regulated gene heme oxygenase-1 (HO-1) and the down-regulated gene solute carrier family 7 member 11 (SLC7A11). The related genes in the p53 signaling pathway included the up-regulated gene tumor suppressor gene p53 and the down-regulated gene murine double minute 2 (MDM2). The related gene in the GSH metabolic signaling pathway was up-regulated gene glutaredoxin 1 (Grx1). The light microscope showed that the pulmonary alveolar structure of the normoxia group was normal. In the HALI group, the pulmonary alveolar septum widened and thickened, and the alveolar cavity shrank or disappeared. RT-RCR and Western blotting confirmed that compared with the normoxia group, the mRNA and protein expressions of HO-1 and p53 in lung tissue of the HALI group were significantly increased [HO-1 mRNA (2 -ΔΔCt): 2.16±0.17 vs. 1.00±0.00, HO-1 protein (HO-1/β-actin): 1.05±0.01 vs. 0.79±0.01, p53 mRNA (2 -ΔΔCt): 2.52±0.13 vs. 1.00±0.00, p53 protein (p53/β-actin): 1.12±0.02 vs. 0.58±0.03, all P < 0.05], and the mRNA and protein expressions of Grx1, MDM2, SLC7A11 were significantly decreased [Grx1 mRNA (2 -ΔΔCt): 0.53±0.05 vs. 1.00±0.00, Grx1 protein (Grx1/β-actin): 0.54±0.03 vs. 0.93±0.01, MDM2 mRNA (2 -ΔΔCt): 0.48±0.03 vs. 1.00±0.00, MDM2 protein (MDM2/β-actin): 0.57±0.02 vs. 1.05±0.01, SLC7A11 mRNA (2 -ΔΔCt): 0.50±0.06 vs. 1.00±0.00, SLC7A11 protein (SLC7A11/β-actin): 0.72±0.03 vs. 0.98±0.01, all P < 0.05]. Conclusions:HALI is closely related to ferroptosis, p53 and GSH metabolism signaling pathways. Targeting the key targets in ferroptosis, p53 and GSH metabolism signaling pathways may be an important strategy for the prevention and treatment of HALI.

Result Analysis
Print
Save
E-mail