1.Principles, technical specifications, and clinical application of lung watershed topography map 2.0: A thoracic surgery expert consensus (2024 version)
Wenzhao ZHONG ; Fan YANG ; Jian HU ; Fengwei TAN ; Xuening YANG ; Qiang PU ; Wei JIANG ; Deping ZHAO ; Hecheng LI ; Xiaolong YAN ; Lijie TAN ; Junqiang FAN ; Guibin QIAO ; Qiang NIE ; Mingqiang KANG ; Weibing WU ; Hao ZHANG ; Zhigang LI ; Zihao CHEN ; Shugeng GAO ; Yilong WU
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(02):141-152
With the widespread adoption of low-dose CT screening and the extensive application of high-resolution CT, the detection rate of sub-centimeter lung nodules has significantly increased. How to scientifically manage these nodules while avoiding overtreatment and diagnostic delays has become an important clinical issue. Among them, lung nodules with a consolidation tumor ratio less than 0.25, dominated by ground-glass shadows, are particularly worthy of attention. The therapeutic challenge for this group is how to achieve precise and complete resection of nodules during surgery while maximizing the preservation of the patient's lung function. The "watershed topography map" is a new technology based on big data and artificial intelligence algorithms. This method uses Dicom data from conventional dose CT scans, combined with microscopic (22-24 levels) capillary network anatomical watershed features, to generate high-precision simulated natural segmentation planes of lung sub-segments through specific textures and forms. This technology forms fluorescent watershed boundaries on the lung surface, which highly fit the actual lung anatomical structure. By analyzing the adjacent relationship between the nodule and the watershed boundary, real-time, visually accurate positioning of the nodule can be achieved. This innovative technology provides a new solution for the intraoperative positioning and resection of lung nodules. This consensus was led by four major domestic societies, jointly with expert teams in related fields, oriented to clinical practical needs, referring to domestic and foreign guidelines and consensus, and finally formed after multiple rounds of consultation, discussion, and voting. The main content covers the theoretical basis of the "watershed topography map" technology, indications, operation procedures, surgical planning details, and postoperative evaluation standards, aiming to provide scientific guidance and exploration directions for clinical peers who are currently or plan to carry out lung nodule resection using the fluorescent microscope watershed analysis method.
2.Construction of evaluation index system of infectious disease prevention and control ability in colleges and universities
Chinese Journal of School Health 2025;46(3):438-442
Objective:
To construct a scientific and perfect evaluation index system of infectious disease prevention and control ability in colleges and universities, so as to provide reference tools for colleges and universities to effectively respond to infectious disease.
Methods:
The initial framework of the evaluation index system of infectious disease prevention and control ability in colleges and universities was constructed by using literature analysis method. Experts familiar with infectious disease prevention and control or school health work were selected to conduct two rounds( n =16,18) of Delphi expert consultation for determining the evaluation index system. Analytical hierarchy process was used to calculate the index weights and combined weights. About 198 prevention and control personnel were conveniently selected from 3 universities in Inner Mongolia Autonomous Region to comprehensively evaluate the evaluation indicators by using fuzzy comprehensive evaluation method.
Results:
After two rounds of Delphi consultation questionnaire, the effective recovery rates were 80.0% and 90.0%, the expert authority levels were 0.89 and 0.86, the expert harmony coefficients for Kendall W were 0.166 and 0.310, and the variation coefficient of each index was <0.25. Finally, the evaluation index system of infectious disease prevention and control ability of colleges and universities included 4 first level indicators, 14 second level indicators and 75 third level indicators. The weights of prevention and monitoring and early warning, organizational system guarantee, emergency management, rehabilitation and summary were 0.176, 0.476, 0.268 and 0.080, respectively. The top 3 weights of the secondary indexes were 0.623 for infectious disease surveillance and early warning, 0.595 for loss assessment and 0.370 for emergency response. The score of fuzzy comprehensive evaluation of the index system of infectious disease prevention and control ability in colleges and universities was 79.148, suggesting a high level.
Conclusion
The established evaluation index system of infectious disease prevention and control ability in colleges and universities is scientific and reasonable, which is conducive to provide tool reference for the evaluation of infectious disease prevention and control ability in colleges and universities.
3.Effects of different storage temperatures and durations on the activity of coagulation factor Ⅷ and Ⅸ in whole blood
Hehe WANG ; Tiantian WANG ; Jie WANG ; Cuicui QIAO ; Wei LIU ; Xueqin ZHANG ; Yan CHENG ; Yunhai FANG ; Xinsheng ZHANG
Chinese Journal of Blood Transfusion 2025;38(6):824-827
Objective: To investigate the effects of different storage temperatures and durations on the activities of coagulation factor Ⅷ (Factor Ⅷ, FⅧ) and coagulation factor Ⅸ (Factor Ⅸ, FⅨ) after whole blood collection, so as to provide data support for the optimal storage conditions. Methods: A total of 16 mL of whole blood was collected from each of the 20 healthy volunteers at our blood center and aliquoted into 8 sodium citrate anticoagulant tubes. Two tubes were immediately centrifuged for the measurement of FⅧ and FⅨ activity levels. The remaining 6 tubes of whole blood were respectively stored under room temperature and low-temperature conditions. At 2, 4, and 6 h, the whole blood samples were centrifuged and analyzed for FⅧ and FⅨ activity levels. The mean values of the two immediately tested tubes were used as the control group, while other tubes were designated as the experimental groups for comparison. Statistical analysis was performed using SPSS 26.0. Results: The activity of FⅧ in whole blood remained stable after 4 hours of storage at both room temperature and low temperature (116.53±25.95 vs 125.22±27.33, 109.77±23.23 vs 125.22±27.33) (P>0.05 for both). However, by 6 hours, FⅧ activity showed a statistically significant decline compared to the control group (108.65±22.92 vs 125.22±27.33, 100.46±20.19 vs 125.22±27.33) (P<0.05 for both), though the room temperature group results were closer to the control values. The activity of FⅨ in whole blood remained stable after 6 hours of storage under both conditions (97.14±19.48 vs 96.76±19.67, 97.10±17.45 vs 96.76±19.6) (P>0.05 for all comparisons). Conclusion: For whole blood samples after collection, storage at either room temperature or low temperature for up to 4 hours does not compromise the accuracy of test results. When stored for 6 hours, FⅨ activity remains stable, whereas FⅧ activity decreases significantly. Notably, FⅧ activity demonstrates better stability at room temperature than under low-temperature conditions within the 6-hour storage.
4.Research on the Optimization Strategy of Operating Room Efficiency in the First Affiliated Hospital of Zhengzhou University
Wei QIAO ; Shuai JIANG ; Ruonan LU ; Di WU ; Dongqing ZHANG ; Jinjin ZHAO
Chinese Health Economics 2024;43(6):85-88
The operating room was the core department of a hospital,and its operational efficiency had a significant impact on the high-quality development of a hospital.An analysis has revealed that low efficiency and irrational allocation in the operating room were mainly due to the lack of operational regulations and norms,the unreasonable arrangement of surgical specialties,and the unbalanced allocation of supporting resources.To address these issues,the First Affiliated Hospital of Zhengzhou University has taken into account the overall allocation of resources for the central operating room and the central operating room,and formulated strategies to improve operational efficiency,including adjusting the operational mechanism,optimizing the structure of surgical specialties,and providing corresponding supporting resources.Based on the adjustment of surgical structure,the implementation effect of the program was measured and evaluated,which provided practical strategies for optimizing operating room efficiency in hospitals.
5.Reflection and Exploration on Medical Equipment Sharing Operation Mechanisms in Large Public Hospitals
Wei QIAO ; Yingbo CHEN ; Dongqing ZHANG ; Di WU ; Xinyue LIU ; Zhuzi YUEGUANG ; Tian ZHANG ; Shuai JIANG ; Jinjin ZHAO
Chinese Health Economics 2024;43(7):69-71,92
The increasing operating pressure of large public hospitals has forced hospitals to focus on opening up income sources and reducing expenditure.The purchase and maintenance of medical equipment is one of the important economic activities of hospi-tals.However,there are problems in large public hospitals,such as the argumentation for equipment acquisition ignoring evaluation of operational efficiency,the costing model that leads to a lack of willingness of departments to purchase equipment,and the lack of standard processes and systems for renting medical equipment among departments.Based on this,it explores the establishment of a medical equipment sharing operation mechanism in large public hospitals,promotes the improvement of the efficiency of medical equipment use in large public hospitals by establishing a medical equipment sharing center,standardizing the purchase of shared equipment,entering shared equipment information,setting up shared equipment leasing specifications,and clarifying the equipment return process and maintenance,so as to effectively control hospital operating costs,and help the high-quality development of public hospitals.
6. A network pharmacology-based approach to explore mechanism of kaempferol-7 -O -neohesperidoside against prostate cancer
Qiu-Ping ZHANG ; Zhi-Ping CHENG ; Wei XUE ; Qiao-Feng LI ; Hong-Wei GUO ; Qiu-Ping ZHANG ; Jie-Jun FU ; Hong-Wei GUO
Chinese Pharmacological Bulletin 2024;40(1):146-154
Aim To explore the effect of kaempferol-7- 0-neohesperidoside (K70N) against prostate cancer (PCa) and the underlying mechanism. Methods The effect of K70N on the proliferation of PCa cell lines PC3, DU145, C4-2 and LNCaP was detected using CCK8 assay. The effect of K70N on migration ability of DU145 cells was determined by wound healing assay. The targets of K70N and PCa were screened from SuperPred and other databases. The common targets both related to K70N and PCa were obtained from the Venny online platform, a protein-protein interaction network (PPI) was constructed by the String and Cyto- scape. Meanwhile, the GO and KEGG functional enrichment were analyzed by David database. Then, a "drug-target-disease-pathway" network model was constructed. Cell cycle of PCa cells treated with K70N was analyzed by flow cytometry. The expressions of cycle-associated proteins including Skp2, p27 and p21 protein were detected by Western blot. Molecular docking between Skp2 and K70N was conducted by Sybyl X2. 0. Results K70N significantly inhibited the proliferation and migration of PCa cells. A total number of 34 drug-disease intersection targets were screened. The String results showed that Skp2 and p27, among the common targets, were the key targets of K70N for PCa treatment. Furthermore, GO and KEGG functional en-richment indicated that the mechanism was mainly related to the cell cycle. Flow cytometry showed that K70N treatment induced cell cycle arrest at the S phase. Compared with the control group, the protein expression level of Skp2 was significantly down-regulated, while the protein expression levels of p27 and p21 were up-regulated. The network molecular docking indicated that the ligand K70N had a good binding ability with the receptor Skp2. Conclusions K70N could inhibit the proliferation and migration of PCa cells, block the cell cycle in the S phase, which may be related to the regulation of cell cycle through the Skp2- p27/p21 signaling pathway.
7.Temporal distribution characteristics of hand, foot and mouth disease in Beijing, 2008-2023
Yongqiang ZHANG ; Wei WANG ; Xitai LI ; Shichang DU ; Cixian XU ; Hong QIAO ; Xingui SUN
Chinese Journal of Epidemiology 2024;45(10):1383-1389
Objective:To analyze the temporal distribution characteristics of hand, foot and mouth disease (HFMD) in Beijing and provide reference evidence in HFMD prevention and control.Methods:The monthly incidence data of HFMD in Beijing from 2008 to 2023 were collected from Notifiable Disease Management Information System of the Chinese Information System of Disease Control and Prevention, and the epidemiological characteristics of HFMD were analyzed by the methods of time series seasonal decomposition graph, concentration degree, and circular distribution.The WPS office software 2019 was used to clean the data, Python software 3.12 was used to analyze and make statistical charts.Results:The monthly incidence fluctuation of HFMD in Beijing from 2008 to 2015 was higher than that from 2016 to 2022. From 2016 to 2022, the fluctuation range of monthly incidence showed a gradually decreasing trend.From 2008 to 2015, the concentration ( M) was 0.58, indicating a relatively strong seasonality; the mean angle ( α) calculated by the circular distribution method was 174.95°, and the mean angle standard deviation ( s) was 60.43°. The annual incidence peak occurred on June 27, and the incidence peak period was from April 27 to August 27. From 2016 to 2019 and 2023, the M was 0.57, indicating a relatively strong seasonality. The α was 228.05°, and s was 61.44°. The annual incidence peak occurred on August 20, and the incidence peak period was from June 18 to October 21. From 2020 to 2022, the M was 0.42, indicating a seasonality, the α was 238.27° and s was 76.35°. The annual incidence peak occurred on July 15, and the incidence peak period was from June 14 to November 14. The α of 2008-2015, 2016-2019 and 2023, and 2020-2022 were tested by the Watson-Williams method and the difference was statistically significant ( F=33 443.09, P<0.001). In 2023, the M was 0.77, indicating a strong seasonality. The incidence peak occurred on September 16, and the incidence peak period was from August 5 to October 28. Conclusions:The seasonality of HFMD in Beijing was obvious from 2008 to 2023, and the incidence peak day and peak period overall had rearward shifts. It is necessary to strengthen the comprehensive analysis of the distribution characteristics at different dimensions and the comprehensive prevention and control in key areas, places, and populations during the peak incidence period.
8.Construction of blood quality monitoring indicator system in blood banks of Shandong
Qun LIU ; Xuemei LI ; Yuqing WU ; Zhiquan RONG ; Zhongsi YANG ; Zhe SONG ; Shuhong ZHAO ; Lin ZHU ; Shuli SUN ; Wei ZHANG ; Jinyu HAN ; Xiaojuan FAN ; Hui YE ; Mingming QIAO ; Hua SHEN ; Dunzhu GONGJUE ; Yunlong ZHUANG
Chinese Journal of Blood Transfusion 2024;37(3):249-257
【Objective】 To establish a blood quality monitoring indicator system, in order to continuously improve blood quality and standardized management. 【Methods】 Based on the research of literature and standards, and guided by the key control points of blood collection and supply process, the blood quality monitoring indicator system was developed. Through two rounds of Delphi expert consultation, the indicator content was further revised and improved according to expert opinions after six months of trial implementation. The indicator weight was calculated by questionnaire and analytic hierarchy process. 【Results】 A blood quality monitoring indicator system covering the whole process of blood collection and supply was constructed, including five primary indicators, namely blood donation service, blood component preparation, blood testing, blood supply and quality control, as well as 72 secondary indicators, including definitions, calculation formulas, etc. Two rounds of expert consultation and two rounds of feasibility study meeting were held to revise 17 items and the weight of each indicator was obtained through the analytic hierarchy process. After partial adjustments, a blood quality monitoring indicator system was formed. 【Conclusion】 A blood quality monitoring indicator system covering the whole process of blood collection and supply has been established for the first time, which can effectively evaluate the quality management level of blood banks and coordinate blood quality control activities of blood banks in Shandong like pieces in a chess game, thus improving the standardized management level
9.Application of quality monitoring indicators of blood testing in blood banks of Shandong province
Xuemei LI ; Weiwei ZHAI ; Zhongsi YANG ; Shuhong ZHAO ; Yuqing WU ; Qun LIU ; Zhe SONG ; Zhiquan RONG ; Shuli SUN ; Xiaojuan FAN ; Wei ZHANG ; Jinyu HAN ; Lin ZHU ; Xianwu AN ; Hui ZHANG ; Junxia REN ; Xuejing LI ; Chenxi YANG ; Bo ZHOU ; Haiyan HUANG ; Guangcai LIU ; Ping CHEN ; Hui YE ; Mingming QIAO ; Hua SHEN ; Dunzhu GONGJUE ; Yunlong ZHUANG
Chinese Journal of Blood Transfusion 2024;37(3):258-266
【Objective】 To objectively evaluate the quality control level of blood testing process in blood banks through quantitative monitoring and trend analysis, and to promote the homogenization level and standardized management of blood testing laboratories in blood banks. 【Methods】 A quality monitoring indicator system covering the whole process of blood collection and supply, including blood donation service, blood component preparation, blood testing, blood supply and quality control was established. The questionnaire Quality Monitoring Indicators for Blood Collection and Supply Process with clear definition of indicators and calculation formulas was distributed to 17 blood banks in Shandong province. Quality monitoring indicators of each blood bank from January to December 2022 were collected, and 31 indicators in terms of blood testing were analyzed using SPSS25.0 software. 【Results】 The proportion of unqualified serological tests in 17 blood bank laboratories was 55.84% for ALT, 13.63% for HBsAg, 5.08% for anti HCV, 5.62% for anti HIV, 18.18% for anti TP, and 1.65% for other factors (mainly sample quality). The detection unqualified rate and median were (1.23±0.57)% and 1.11%, respectively. The ALT unqualified rate and median were (0.74±0.53)% and 0.60%, respectively. The detection unqualified rate was positively correlated with ALT unqualified rate (r=0.974, P<0.05). The unqualified rate of HBsAg, anti HCV, anti HIV and anti TP was (0.15±0.09)%, (0.05±0.04)%, (0.06±0.03)% and (0.20±0.05)% respectively. The average unqualified rate, average hemolysis rate, average insufficient volume rate and the abnormal hematocrit rate of samples in 17 blood bank laboratories was 0.21‰, 0.08‰, 0.01‰ and 0.02‰ respectively. There were differences in the retest concordance rates of four HBsAg, anti HCV and anti HIV reagents, and three anti TP reagents among 17 blood bank laboratories (P<0.05). The usage rate of ELISA reagents was (114.56±3.30)%, the outage rate of ELISA was (10.23±7.05) ‰, and the out of range rate of ELISA was (0.90±1.17) ‰. There was no correlation between the out of range rate, outrage rate and usage rate (all P>0.05), while the outrage rate was positively correlated with the usage rate (r=0.592, P<0.05). A total of 443 HBV DNA positive samples were detected in all blood banks, with an unqualified rate of 3.78/10 000; 15 HCV RNA positive samples were detected, with an unqualified rate of 0.13/10 000; 5 HIV RNA positive samples were detected, with an unqualified rate of 0.04/10 000. The unqualified rate of NAT was (0.72±0.04)‰, the single NAT reaction rate [(0.39±0.02)‰] was positively correlated with the single HBV DNA reaction rate [ (0.36±0.02) ‰] (r=0.886, P<0.05). There was a difference in the discriminated reactive rate by individual NAT among three blood bank laboratories (C, F, H) (P<0.05). The median resolution rate of 17 blood station laboratories by minipool test was 36.36%, the median rate of invalid batch of NAT was 0.67%, and the median rate of invalid result of NAT was 0.07‰. The consistency rate of ELISA dual reagent detection results was (99.63±0.24)%, and the median length of equipment failure was 14 days. The error rate of blood type testing in blood collection department was 0.14‰. 【Conclusion】 The quality monitoring indicator system for blood testing process in Shandong can monitor potential risks before, during and after the experiment, and has good applicability, feasibility, and effectiveness, and can facilitate the continuous improvement of laboratory quality control level. The application of blood testing quality monitoring indicators will promote the homogenization and standardization of blood quality management in Shandong, and lay the foundation for future comprehensive evaluations of blood banks.
10.Application of quality control indicator system in blood banks of Shandong
Qun LIU ; Yuqing WU ; Xuemei LI ; Zhongsi YANG ; Zhe SONG ; Zhiquan RONG ; Shuhong ZHAO ; Lin ZHU ; Xiaojuan FAN ; Shuli SUN ; Wei ZHANG ; Jinyu HAN ; Xuejing LI ; Bo ZHOU ; Chenxi YANG ; Haiyan HUANG ; Guangcai LIU ; Kai CHEN ; Xianwu AN ; Hui ZHANG ; Junxia REN ; Hui YE ; Mingming QIAO ; Hua SHEN ; Dunzhu GONGJUE ; Yunlong ZHUANG
Chinese Journal of Blood Transfusion 2024;37(3):267-274
【Objective】 To establish an effective quality monitoring indicator system for blood quality control in blood banks, in order to analyze the quality control indicators for blood collection and supply, and evaluate blood quality control process, thus promoting continuous improvement and standardizing management of blood quality control in blood banks. 【Methods】 A quality monitoring indicator system covering the whole process of blood collection and supply, including blood donation services, component preparation, blood testing, blood supply and quality control was established. The Questionnaire of Quality Monitoring Indicators for Blood Collection and Supply Process was distributed to 17 blood banks in Shandong, which clarified the definition and calculation formula of indicators. The quality monitoring indicator data from January to December 2022 in each blood bank were collected, and 20 quality control indicators data were analyzed by SPSS25.0 software. 【Results】 The average pass rate of key equipment monitoring, environment monitoring, key material monitoring, and blood testing item monitoring of 17 blood banks were 99.47%, 99.51%, 99.95% and 98.99%, respectively. Significant difference was noticed in the pass rate of environment monitoring among blood banks of varied scales(P<0.05), and the Pearson correlation coefficient (r) between the total number of blood quality testing items and the total amount of blood component preparation was 0.645 (P<0.05). The average discarding rates of blood testing or non-blood testing were 1.14% and 3.36% respectively, showing significant difference among blood banks of varied scales (P<0.05). The average discarding rate of lipemic blood was 3.07%, which had a positive correlation with the discarding rate of non testing (r=0.981 3, P<0.05). There was a statistically significant difference in the discarding rate of lipemic blood between blood banks with lipemic blood control measures and those without (P<0.05). The average discarding rate of abnormal color, non-standard volume, blood bag damage, hemolysis, blood protein precipitation and blood clotting were 0.20%, 0.14%, 0.06%, 0.06%, 0.02% and 0.02% respectively, showing statistically significant differences among large, medium and small blood banks(P<0.05).The average discarding rates of expired blood, other factors, confidential unit exclusion and unqualified samples were 0.02%, 0.05%, 0.003% and 0.004%, respectively. The discarding rate of blood with air bubbles was 0.015%, while that of blood with foreign body and unqualified label were 0. 【Conclusion】 The quality control indicator system of blood banks in Shandong can monitor weak points in process management, with good applicability, feasibility, and effectiveness. It is conducive to evaluate different blood banks, continuously improve the quality control level of blood collection and supply, promote the homogenization and standardization of blood quality management, and lay the foundation for comprehensive evaluation of blood banks in Shandong.


Result Analysis
Print
Save
E-mail