Medical image is a powerful tool to assist doctors in the diagnosis and treatment planning.Nowadays,the segmentation of medical images is no longer limited to manual segmentation methods.Traditional methods and deep learning methods have been used to achieve more accurate results in medical image segmentation.Herein some innovative medical image segmentation methods in recent years are reviewed.By elaborating on the innovations of deep learning methods(SAM,SegNet,Mask R-CNN,and U-NET)and traditional methods(active contour model and threshold segmentation model),the differences and similarities between them are compared.The summary of medical image segmentation methods and the prospect is expected to help researchers better grasp and familiarize themselves with research status and development trend.