1.Construction and effectiveness evaluation of a closed-loop management system for dispensed oral drugs in the inpatient pharmacy based on SWOT analysis
Jia WANG ; Weihong GE ; Ruijuan XU ; Shanshan QIAN ; Xuemin SONG ; Xiangling SHENG ; Bin WU ; Li LI
China Pharmacy 2025;36(4):401-406
OBJECTIVE To improve the efficiency and quality of dispensed oral drug management in the inpatient pharmacy, and ensure the safety of drug use in patients. METHODS SWOT (strength, weakness, opportunity, threat) analysis method was used to analyze the internal strengths and weaknesses, as well as the external opportunities and threats in the construction of a closed-loop management system for dispensed oral drugs in the inpatient pharmacy of our hospital, and propose improvement strategies. RESULTS & CONCLUSIONS A refined, full-process, closed-loop traceability management system for dispensed oral drugs in the inpatient pharmacies was successfully established, which is traceable in origin, trackable in destination, and accountable in responsibility. After the application of this system, the registration rate of dispensed drug information and the correctness rate of registration content both reached 100%. The proportion of overdue drug varieties in the same period of 2024 decreased by 77.78% compared to March 2020, the inventory volume decreased by 29.50% compared to the first quarter of 2020, the per-bed medication volume decreased by 32.14% compared to the first quarter of 2020; the average workload per post in the same period of 2023 increased by 49.09% compared to 2019, the dispensing accuracy rate reached 100%, and the improvement rate of quality control problem increased by 25.25% compared to 2021. This system effectively improves the safety and accuracy of dispensed oral drug management in the inpatient pharmacy.
2.Clinical Study on the Treatment of 70 Cases Chronic Atrophic Gastritis with Intestinal Metaplasia Using Xianglian Huazhuo Granules (香连化浊颗粒):A Randomized,Double-Blind,Placebo-Controlled Trial
Ziyu LI ; Maopeng ZHANG ; Wen ZHAO ; Wei LI ; Shiyun SHENG ; Haiyan BAI ; Qian YANG
Journal of Traditional Chinese Medicine 2025;66(5):473-479
ObjectiveTo observe the clinical efficacy and possible mechanisms of Xianglian Huazhuo Granules (香连化浊颗粒, XHG) in the treatment of chronic atrophic gastritis with intestinal metaplasia. MethodsA total of 140 patients with chronic atrophic gastritis and intestinal metaplasia were randomly divided into a treatment group and a control group, with 70 cases in each group. The treatment group received 12.5 g of XHG orally, twice daily. The control group received 12.5 g of placebo orally, twice daily. Both groups were treated for 6 months. The traditional Chinese medicine (TCM) symptom scores, pathological types, serum tumor markers of the digestive system, and serum bile acids (TBA), interleukin-23 (IL-23), and Dickkopf-related protein 1 (DKK-1) levels were observed before and after treatment. Safety indicators and adverse events were recorded. After treatment, TCM syndrome efficacy and pathological types were evaluated, and patients were followed up for 18 months with gastric endoscopy and pathological results, which were compared with the results after treatment finished. ResultsTwo patients dropped out in the control group, and a total of 168 cases were included in the final analysis, 70 in the treatment group and 68 in the control group. The treatment group showed a significant reduction in TCM symptom scores, serum TBA, IL-23, and DKK-1 levels, and a significant increase in alpha-fetoprotein (AFP), carbohydrate antigen 125 (CA125), carbohydrate antigen 199 (CA199) levels; in the control group, carcinoembryonic antigen (CEA), CA125, CA199 levels significantly increased (P<0.05 or P<0.01); and carbohydrate antigen 242 (CA242) level in both the treatment group and the control group decreased significantly (P<0.01). The treatment group had lower TCM symptom scores and lower levels of serum TBA, IL-23, and DKK-1 compared to the control group (P<0.05). The effective rate for TCM syndrome efficacy in the treatment group was 80.00% (56/70), significantly higher than the 20.59% (14/68) in the control group (P < 0.05). The effective rate for pathological classification in the treatment group was 72.73% (8/11) for mixed intestinal metaplasia, significantly better than 46.15% (6/13) in the control group (P<0.05). No adverse events were reported in either group. Among 40 patients who had a follow-up endoscopy after one year, 21 were from the treatment group, of whom 11 showed reduced intestinal metaplasia, 9 showed no significant changes, and 1 had worsened; while 19 patients in the control group had 4 with reduced intestinal metaplasia, 13 with no significant changes, and 2 with worsened conditions. No cancer was detected in either group. The treatment group showed significantly better improvement in intestinal metaplasia on follow-up gastric endoscopy pathology than the control group (P<0.05). ConclusionXHG can significantly improve the clinical symptoms in patients with chronic atrophic gastritis and intestinal metaplasia and reduce the degree of mixed intestinal metaplasia. The mechanism may involve lowering serum TBA, DKK-1, and IL-23 levles, thus delaying the progression from inflammation to cancer.
3.The characteristics and mechanism of dynamic changes of different components in microenvironment in regulating the progression of liver fibrosis
Huilan ZHAO ; Zongxu LIU ; Shumin LI ; Zhifeng WANG ; Minghui LIU ; Qian SHENG ; Kunbin KE ; Xinan SHI
Journal of Clinical Hepatology 2025;41(4):755-760
The liver has diverse functions such as metabolism, detoxification, and immune defense, and the maintenance of hepatic microenvironment homeostasis is crucial for overall bodily health. The hepatic microenvironment consists of the components such as parenchymal cells, non-parenchymal cells, and non-cellular components. Chronic inflammatory responses induced by various etiological factors may promote the formation and progression of liver fibrosis. During the dynamic progression of liver fibrosis, from the early to advanced stages, various components within the hepatic microenvironment undergo a series of changes, which can promote the malignant progression of liver fibrosis. An in-depth exploration of the mechanisms underlying such changes in each component of the liver fibrosis microenvironment is of great significance for understanding the pathogenesis of liver fibrosis and discovering potential treatment strategies.
4.Shikonin attenuates blood–brain barrier injury and oxidative stress in rats with subarachnoid hemorrhage by activating Sirt1/ Nrf2/HO-1 signaling
Guanghu LI ; Yang'e YI ; Sheng QIAN ; Xianping XU ; Hao MIN ; Jianpeng WANG ; Pan GUO ; Tingting YU ; Zhiqiang ZHANG
The Korean Journal of Physiology and Pharmacology 2025;29(3):283-291
Subarachnoid hemorrhage (SAH) is a serious intracranial hemorrhage characterized by acute bleeding into the subarachnoid space. The effects of shikonin, a natural compound from the roots of Lithospermum erythrorhizon, on oxidative stress and blood–brain barrier (BBB) injury in SAH was evaluated in this study. A rat model of SAH was established by endovascular perforation to mimic the rupture of intracranial aneurysms. Rats were then administered 25 mg/kg of shikonin or dimethylsulfoxide after surgery. Brain edema, SAH grade, and neurobehavioral scores were measured after 24 h of SAH to evaluate neurological impairment. Concentrations of the oxidative stress markers superoxide dismutase (SOD), glutathione (GSH), and malondialdehyde (MDA) in the brain cortex were determined using the corresponding commercially available assay kits. Evans blue staining was used to determine BBB permeability. Western blotting was used to quantify protein levels of tight junction proteins zonula occludens-1, Occludin, and Claudin-5. After modeling, the brain water content increased significantly whereas the neurobehavioral scores of rats with SAH decreased prominently. MDA levels increased and the levels of the antioxidant enzymes GSH and SOD decreased after SAH. These changes were reversed after shikonin administration. Shikonin treatment also inhibited Evans blue extravasation after SAH. Furthermore, reduction in the levels of tight junction proteins after SAH modeling was rescued after shikonin treatment. In conclusion, shikonin exerts a neuroprotective effect after SAH by mitigating BBB injury and inhibiting oxidative stress in the cerebral cortex.
5.Shikonin attenuates blood–brain barrier injury and oxidative stress in rats with subarachnoid hemorrhage by activating Sirt1/ Nrf2/HO-1 signaling
Guanghu LI ; Yang'e YI ; Sheng QIAN ; Xianping XU ; Hao MIN ; Jianpeng WANG ; Pan GUO ; Tingting YU ; Zhiqiang ZHANG
The Korean Journal of Physiology and Pharmacology 2025;29(3):283-291
Subarachnoid hemorrhage (SAH) is a serious intracranial hemorrhage characterized by acute bleeding into the subarachnoid space. The effects of shikonin, a natural compound from the roots of Lithospermum erythrorhizon, on oxidative stress and blood–brain barrier (BBB) injury in SAH was evaluated in this study. A rat model of SAH was established by endovascular perforation to mimic the rupture of intracranial aneurysms. Rats were then administered 25 mg/kg of shikonin or dimethylsulfoxide after surgery. Brain edema, SAH grade, and neurobehavioral scores were measured after 24 h of SAH to evaluate neurological impairment. Concentrations of the oxidative stress markers superoxide dismutase (SOD), glutathione (GSH), and malondialdehyde (MDA) in the brain cortex were determined using the corresponding commercially available assay kits. Evans blue staining was used to determine BBB permeability. Western blotting was used to quantify protein levels of tight junction proteins zonula occludens-1, Occludin, and Claudin-5. After modeling, the brain water content increased significantly whereas the neurobehavioral scores of rats with SAH decreased prominently. MDA levels increased and the levels of the antioxidant enzymes GSH and SOD decreased after SAH. These changes were reversed after shikonin administration. Shikonin treatment also inhibited Evans blue extravasation after SAH. Furthermore, reduction in the levels of tight junction proteins after SAH modeling was rescued after shikonin treatment. In conclusion, shikonin exerts a neuroprotective effect after SAH by mitigating BBB injury and inhibiting oxidative stress in the cerebral cortex.
6.Shikonin attenuates blood–brain barrier injury and oxidative stress in rats with subarachnoid hemorrhage by activating Sirt1/ Nrf2/HO-1 signaling
Guanghu LI ; Yang'e YI ; Sheng QIAN ; Xianping XU ; Hao MIN ; Jianpeng WANG ; Pan GUO ; Tingting YU ; Zhiqiang ZHANG
The Korean Journal of Physiology and Pharmacology 2025;29(3):283-291
Subarachnoid hemorrhage (SAH) is a serious intracranial hemorrhage characterized by acute bleeding into the subarachnoid space. The effects of shikonin, a natural compound from the roots of Lithospermum erythrorhizon, on oxidative stress and blood–brain barrier (BBB) injury in SAH was evaluated in this study. A rat model of SAH was established by endovascular perforation to mimic the rupture of intracranial aneurysms. Rats were then administered 25 mg/kg of shikonin or dimethylsulfoxide after surgery. Brain edema, SAH grade, and neurobehavioral scores were measured after 24 h of SAH to evaluate neurological impairment. Concentrations of the oxidative stress markers superoxide dismutase (SOD), glutathione (GSH), and malondialdehyde (MDA) in the brain cortex were determined using the corresponding commercially available assay kits. Evans blue staining was used to determine BBB permeability. Western blotting was used to quantify protein levels of tight junction proteins zonula occludens-1, Occludin, and Claudin-5. After modeling, the brain water content increased significantly whereas the neurobehavioral scores of rats with SAH decreased prominently. MDA levels increased and the levels of the antioxidant enzymes GSH and SOD decreased after SAH. These changes were reversed after shikonin administration. Shikonin treatment also inhibited Evans blue extravasation after SAH. Furthermore, reduction in the levels of tight junction proteins after SAH modeling was rescued after shikonin treatment. In conclusion, shikonin exerts a neuroprotective effect after SAH by mitigating BBB injury and inhibiting oxidative stress in the cerebral cortex.
7.Shikonin attenuates blood–brain barrier injury and oxidative stress in rats with subarachnoid hemorrhage by activating Sirt1/ Nrf2/HO-1 signaling
Guanghu LI ; Yang'e YI ; Sheng QIAN ; Xianping XU ; Hao MIN ; Jianpeng WANG ; Pan GUO ; Tingting YU ; Zhiqiang ZHANG
The Korean Journal of Physiology and Pharmacology 2025;29(3):283-291
Subarachnoid hemorrhage (SAH) is a serious intracranial hemorrhage characterized by acute bleeding into the subarachnoid space. The effects of shikonin, a natural compound from the roots of Lithospermum erythrorhizon, on oxidative stress and blood–brain barrier (BBB) injury in SAH was evaluated in this study. A rat model of SAH was established by endovascular perforation to mimic the rupture of intracranial aneurysms. Rats were then administered 25 mg/kg of shikonin or dimethylsulfoxide after surgery. Brain edema, SAH grade, and neurobehavioral scores were measured after 24 h of SAH to evaluate neurological impairment. Concentrations of the oxidative stress markers superoxide dismutase (SOD), glutathione (GSH), and malondialdehyde (MDA) in the brain cortex were determined using the corresponding commercially available assay kits. Evans blue staining was used to determine BBB permeability. Western blotting was used to quantify protein levels of tight junction proteins zonula occludens-1, Occludin, and Claudin-5. After modeling, the brain water content increased significantly whereas the neurobehavioral scores of rats with SAH decreased prominently. MDA levels increased and the levels of the antioxidant enzymes GSH and SOD decreased after SAH. These changes were reversed after shikonin administration. Shikonin treatment also inhibited Evans blue extravasation after SAH. Furthermore, reduction in the levels of tight junction proteins after SAH modeling was rescued after shikonin treatment. In conclusion, shikonin exerts a neuroprotective effect after SAH by mitigating BBB injury and inhibiting oxidative stress in the cerebral cortex.
8.Shikonin attenuates blood–brain barrier injury and oxidative stress in rats with subarachnoid hemorrhage by activating Sirt1/ Nrf2/HO-1 signaling
Guanghu LI ; Yang'e YI ; Sheng QIAN ; Xianping XU ; Hao MIN ; Jianpeng WANG ; Pan GUO ; Tingting YU ; Zhiqiang ZHANG
The Korean Journal of Physiology and Pharmacology 2025;29(3):283-291
Subarachnoid hemorrhage (SAH) is a serious intracranial hemorrhage characterized by acute bleeding into the subarachnoid space. The effects of shikonin, a natural compound from the roots of Lithospermum erythrorhizon, on oxidative stress and blood–brain barrier (BBB) injury in SAH was evaluated in this study. A rat model of SAH was established by endovascular perforation to mimic the rupture of intracranial aneurysms. Rats were then administered 25 mg/kg of shikonin or dimethylsulfoxide after surgery. Brain edema, SAH grade, and neurobehavioral scores were measured after 24 h of SAH to evaluate neurological impairment. Concentrations of the oxidative stress markers superoxide dismutase (SOD), glutathione (GSH), and malondialdehyde (MDA) in the brain cortex were determined using the corresponding commercially available assay kits. Evans blue staining was used to determine BBB permeability. Western blotting was used to quantify protein levels of tight junction proteins zonula occludens-1, Occludin, and Claudin-5. After modeling, the brain water content increased significantly whereas the neurobehavioral scores of rats with SAH decreased prominently. MDA levels increased and the levels of the antioxidant enzymes GSH and SOD decreased after SAH. These changes were reversed after shikonin administration. Shikonin treatment also inhibited Evans blue extravasation after SAH. Furthermore, reduction in the levels of tight junction proteins after SAH modeling was rescued after shikonin treatment. In conclusion, shikonin exerts a neuroprotective effect after SAH by mitigating BBB injury and inhibiting oxidative stress in the cerebral cortex.
9.Essential tremor plus affects disease prognosis: A longitudinal study.
Runcheng HE ; Mingqiang LI ; Xun ZHOU ; Lanqing LIU ; Zhenhua LIU ; Qian XU ; Jifeng GUO ; Xinxiang YAN ; Chunyu WANG ; Hainan ZHANG ; Irene X Y WU ; Beisha TANG ; Sheng ZENG ; Qiying SUN
Chinese Medical Journal 2025;138(1):117-119
10.Comparison of treatment regimens for unresectable stage III epidermal growth factor receptor ( EGFR ) mutant non-small cell lung cancer.
Xin DAI ; Qian XU ; Lei SHENG ; Xue ZHANG ; Miao HUANG ; Song LI ; Kai HUANG ; Jiahui CHU ; Jian WANG ; Jisheng LI ; Yanguo LIU ; Jianyuan ZHOU ; Shulun NIE ; Lian LIU
Chinese Medical Journal 2025;138(14):1687-1695
BACKGROUND:
Durvalumab after chemoradiotherapy (CRT) failed to bring survival benefits to patients with epidermal growth factor receptor ( EGFR ) mutations in PACIFIC study (evaluating durvalumab in patients with stage III, unresectable NSCLC who did not have disease progression after concurrent chemoradiotherapy). We aimed to explore whether locally advanced inoperable patients with EGFR mutations benefit from tyrosine kinase inhibitors (TKIs) and the optimal treatment regimen.
METHODS:
We searched the PubMed, Embase, the Cochrane Central Register of Controlled Trials, and ClinicalTrials.gov databases from inception to December 31, 2022 and performed a meta-analysis based on a Bayesian framework, with progression-free survival (PFS) and overall survival (OS) as the primary endpoints.
RESULTS:
A total of 1156 patients were identified in 16 studies that included 6 treatment measures, including CRT, CRT followed by durvalumab (CRT-Durva), TKI monotherapy, radiotherapy combined with TKI (RT-TKI), CRT combined with TKI (CRT-TKI), and TKI combined with durvalumab (TKI-Durva). The PFS of patients treated with TKI-containing regimens was significantly longer than that of patients treated with TKI-free regimens (hazard ratio [HR] = 0.37, 95% confidence interval [CI], 0.20-0.66). The PFS of TKI monotherapy was significantly longer than that of CRT (HR = 0.66, 95% CI, 0.50-0.87) but shorter than RT-TKI (HR = 1.78, 95% CI, 1.17-2.67). Furthermore, the PFS of RT-TKI or CRT-TKI were both significantly longer than that of CRT or CRT-Durva. RT-TKI ranked first in the Bayesian ranking, with the longest OS (60.8 months, 95% CI = 37.2-84.3 months) and the longest PFS (21.5 months, 95% CI, 15.4-27.5 months) in integrated analysis.
CONCLUSIONS:
For unresectable stage III EGFR mutant NSCLC, RT and TKI are both essential. Based on the current evidence, RT-TKI brings a superior survival advantage, while CRT-TKI needs further estimation. Large randomized clinical trials are urgently needed to explore the appropriate application sequences of TKI, radiotherapy, and chemotherapy.
REGISTRATION
PROSPERO; https://www.crd.york.ac.uk/PROSPERO/ ; No. CRD42022298490.
Humans
;
Carcinoma, Non-Small-Cell Lung/therapy*
;
ErbB Receptors/genetics*
;
Lung Neoplasms/drug therapy*
;
Mutation/genetics*
;
Protein Kinase Inhibitors/therapeutic use*
;
Chemoradiotherapy
;
Antibodies, Monoclonal/therapeutic use*

Result Analysis
Print
Save
E-mail