1.Research progress on the mechanisms of Tau phosphorylation and its kinases in hypoxic-ischemic brain damage.
Qi-Yi HUANG ; You XIANG ; Jia-Hang TANG ; Li-Jia CHEN ; Kun-Lin LI ; Wei-Fang ZHAO ; Qian WANG
Acta Physiologica Sinica 2025;77(1):139-150
Hypoxic-ischemic brain damage (HIBD) is one of the main causes of disability in middle-aged and elderly people, as well as high mortality rates and long-term physical impairments in newborns. The pathological manifestations of HIBD include neuronal damage and loss of myelin sheaths. Tau protein is an important microtubule-associated protein in brain, exists in neurons and oligodendrocytes, and regulates various cellular activities such as cell differentiation and maturation, axonal transport, and maintenance of cellular cytoskeleton structure. Phosphorylation is a common chemical modification of Tau. In physiological condition, it maintains normal cell cytoskeleton and biological functions by regulating Tau structure and function. In pathological conditions, it leads to abnormal Tau phosphorylation and influences its structure and functions, resulting in Tauopathies. Studies have shown that brain hypoxia-ischemia could cause abnormal alteration in Tau phosphorylation, then participating in the pathological process of HIBD. Meanwhile, brain hypoxia-ischemia can induce oxidative stress and inflammation, and multiple Tau protein kinases are activated and involved in Tau abnormal phosphorylation. Therefore, exploring specific molecular mechanisms by which HIBD activates Tau protein kinases, and elucidating their relationship with abnormal Tau phosphorylation are crucial for future researches on HIBD related treatments. This review aims to focus on the mechanisms of the role of Tau phosphorylation in HIBD, and the potential relationships between Tau protein kinases and Tau phosphorylation, providing a basis for intervention and treatment of HIBD.
Humans
;
tau Proteins/physiology*
;
Phosphorylation
;
Hypoxia-Ischemia, Brain/physiopathology*
;
Animals
;
Oxidative Stress
2.Antidepressant mechanism of Baihe Dihuang Decoction based on metabolomics and network pharmacology.
Chao HU ; Hui YANG ; Hong-Qing ZHAO ; Si-Qi HUANG ; Hong-Yu LIU ; Shui-Han ZHANG ; Lin TANG
China Journal of Chinese Materia Medica 2025;50(1):10-20
The Baihe Dihuang Decoction(BDD) is a representative traditional Chinese medicine formula that has been used to treat depression. This study employed metabolomics and network pharmacology to investigate the mechanism of BDD in the treatment of depression. Fifty male Sprague-Dawley(SD) rats were randomly assigned to the normal control group, model group, fluoxetine group, and high-and low-dose BDD groups. A rat model of depression was established through chronic unpredictable mild stress(CUMS), and the behavioral changes were detected by forced swimming test and open field test. Metabolomics technology was used to analyze the metabolic profiles of serum and hippocampal tissue to screen differential metabolites and related metabolic pathways. Additionally, network pharmacology and molecular docking techniques were used to investigate the key targets and core active ingredients of BDD in improving metabolic abnormalities of depression. A "component-target-metabolite-pathway" regulatory network was constructed. BDD could significantly improve depressive-like behavior in CUMS rats and regulate 12 differential metabolites in serum and 27 differential metabolites in the hippocampus, involving tryptophan metabolism, phenylalanine, tyrosine, and tryptophan biosynthesis, alanine, aspartate, and glutamate metabolism, tyrosine metabolism, and purine metabolism. Verbascoside, isorbascoside, and regaloside B were the key active ingredients for improving metabolic abnormalities in depression. Epidermal growth factor receptor(EGFR), protooncogene tyrosine-protein kinase(SRC), glycogen synthase kinase 3β(GSK3β), and androgen receptor(AR) were the key core targets for improving metabolic abnormalities of depression. This study offered a preliminary insight into the mechanism of BDD in alleviating metabolic abnormalities of depression through network regulation, providing valuable guidance for its clinical use and subsequent research.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Male
;
Rats, Sprague-Dawley
;
Rats
;
Metabolomics
;
Depression/genetics*
;
Antidepressive Agents/chemistry*
;
Network Pharmacology
;
Hippocampus/drug effects*
;
Humans
;
Molecular Docking Simulation
;
Behavior, Animal/drug effects*
;
Disease Models, Animal
3.Construction of Saccharomyces cerevisiae cell factory for efficient biosynthesis of ferruginol.
Mei-Ling JIANG ; Zhen-Jiang TIAN ; Hao TANG ; Xin-Qi SONG ; Jian WANG ; Ying MA ; Ping SU ; Guo-Wei JIA ; Ya-Ting HU ; Lu-Qi HUANG
China Journal of Chinese Materia Medica 2025;50(4):1031-1042
Diterpenoid ferruginol is a key intermediate in biosynthesis of active ingredients such as tanshinone and carnosic acid.However, the traditional process of obtaining ferruginol from plants is often cumbersome and inefficient. In recent years, the increasingly developing gene editing technology has been gradually applied to the heterologous production of natural products, but the production of ferruginol in microbe is still very low, which has become an obstacle to the efficient biosynthesis of downstream chemicals, such as tanshinone. In this study, miltiradiene was produced by integrating the shortened diterpene synthase fusion protein,and the key genes in the MVA pathway were overexpressed to improve the yield of miltiradiene. Under the shake flask fermentation condition, the yield of miltiradiene reached about(113. 12±17. 4)mg·L~(-1). Subsequently, this study integrated the ferruginol synthase Sm CYP76AH1 and Sm CPR1 to reconstruct the ferruginol pathway and thereby realized the heterologous synthesis of ferruginol in Saccharomyces cerevisiae. The study selected the best ferruginol synthase(Il CYP76AH46) from different plants and optimized the expression of pathway genes through redox partner engineering to increase the yield of ferruginol. By increasing the copy number of diterpene synthase, CYP450, and CPR, the yield of ferruginol reached(370. 39± 21. 65) mg·L~(-1) in the shake flask, which was increased by 21. 57-fold compared with that when the initial ferruginol strain JMLT05 was used. Finally, 1 083. 51 mg·L~(-1) ferruginol was obtained by fed-batch fermentation, which is the highest yield of ferruginol from biosynthesis so far. This study provides not only research ideas for other metabolic engineering but also a platform for the construction of cell factories for downstream products.
Saccharomyces cerevisiae/genetics*
;
Diterpenes/metabolism*
;
Metabolic Engineering
;
Fermentation
;
Abietanes
4.Anti-endometritis effect of carbonized Scutellariae Radix in mice induced by LPS via inhibiting cell pyroptosis through IKBKE/NLRP3 signaling axis.
Hong TAO ; Rang-Rang TANG ; Qing SU ; Li HUANG ; Li-Li LI ; De-Ling WU ; Qi HUANG
China Journal of Chinese Materia Medica 2025;50(11):3024-3034
This paper investigated the inhibitory effect of carbonized Scutellariae Radix(Cb-SR) on pyroptosis in endometrial epithelial cells of mice with endometritis and its correlation with the IKBKE/NLRP3 signaling axis. Mice model of endometritis was established by using an intrauterine injection of 10 μL polysaccharides(LPS, 5 mg·mL~(-1)), and the mice were randomly divided into model group(LPS), low-dose group of Cb-SR(L-Cb-SR, 0.55 g·kg~(-1)), medium-dose group of Cb-SR(M-Cb-SR, 1.10 g·kg~(-1)), high-dose group of Cb-SR(H-Cb-SR, 2.20 g·kg~(-1)), crude Scutellariae Radix group(Cr-SR, 1.63 g·kg~(-1)), and Fuke Qianjin Capsule group(FQC, 0.30 g·kg~(-1)), with 10 mice in each group. Ten healthy female mice were selected and injected with PBS of equal volume into the bilateral uterus, and they were set as the sham group. The mice in the drug treatment groups were given the corresponding doses of Cb-SR, Cr-SR, FQC, or physiological saline of equal volume by gavage twice a day for seven days. Thirty minutes after the last administration, each mouse was euthanized by cervical dislocation. Hematoxylin-eosin(HE) staining and transmission electron microscopy were applied to observe the histopathological morphology of the uterine tissue. Immunohistochemistry was used to detect the expression of CD38 and CD138. Myeloperoxidase(MPO) values in neutrophils were measured by the kit; Enzyme-linked immunosorbent assay(ELISA) was used to measure the secretion of interleukin-18(IL-18), interleukin-1β(IL-1β), and tumor necrosis factor-α(TNF-α). Immunofluorescence and Western blot were used to analyze the expression of the proteins related to the IKBKE/NLRP3 signaling axis. Mouse endometrial epithelial cells(MEECs) were separated and purified from the uterine tissue of pregnant female mice through in vitro experiments and injured by LPS for 24 h, and then they were cultured with Cb-SR-containing serum. The anti-endometritis effect of Cb-SR was investigated by CCK-8 assay, scanning electron microscopy, and Western blot. The results showed that Cb-SR significantly reduced MPO values, attenuated uterine tissue damage, inhibited the expression of CD38 and CD138, decreased the levels of IL-1β, IL-18, and TNF-α, and inhibited the expression of proteins associated with IKBKE/NLRP3 signaling axis in mice with endometritis. In addition, Cb-SR-containing serum reduced swelling of MEECs organelles induced by LPS, decreased the expression of inflammatory factors, and suppressed the expression of IKBKE/NLRP3 signaling axis-related proteins. These results suggest that Cb-SR can inhibit endometrial epithelial cell pyroptosis in endometritis by suppressing the IKBKE/NLRP3 signaling axis.
Animals
;
Female
;
Mice
;
Pyroptosis/drug effects*
;
Signal Transduction/drug effects*
;
NLR Family, Pyrin Domain-Containing 3 Protein/genetics*
;
Drugs, Chinese Herbal/chemistry*
;
Endometritis/chemically induced*
;
Lipopolysaccharides/adverse effects*
;
Scutellaria baicalensis/chemistry*
;
Humans
;
Epithelial Cells/drug effects*
5.Nanomedicine-driven tumor glucose metabolic reprogramming for enhanced cancer immunotherapy.
Chenwei JIANG ; Minglu TANG ; Yun SU ; Junjie XIE ; Qi SHANG ; Mingmei GUO ; Xiaoran AN ; Longfei LIN ; Ruibin WANG ; Qian HUANG ; Guangji ZHANG ; Hui LI ; Feihu WANG
Acta Pharmaceutica Sinica B 2025;15(6):2845-2866
Tumors exhibit abnormal glucose metabolism, consuming excessive glucose and excreting lactate, which constructs a tumor microenvironment that facilitates cancer progression and disrupts immunotherapeutic efficacy. Currently, tumor glucose metabolic dysregulation to reshape the immunosuppressive microenvironment and enhance immunotherapy efficacy is emerging as an innovative therapeutic strategy. However, glucose metabolism modulators lack specificity and still face significant challenges in overcoming tumor delivery barriers, microenvironmental complexity, and metabolic heterogeneity, resulting in poor clinical benefit. Nanomedicines, with their ability to selectively target tumors or immune cells, respond to the tumor microenvironment, co-deliver multiple drugs, and facilitate combinatorial therapies, hold significant promise for enhancing immunotherapy through tumor glucose metabolic reprogramming. This review explores the complex interactions between tumor glucose metabolism-specifically metabolite transport, glycolysis processes, and lactate-and the immune microenvironment. We summarize how nanomedicine-mediated reprogramming of tumor glucose metabolism can enhance immunotherapy efficacy and outline the prospects and challenges in this field.
6.Reproducibility of the NMR-based quantitative metabolomics and HBV-caused changes in human serum lipoprotein subclasses and small metabolites.
Qingxia HUANG ; Qinsheng CHEN ; Xiaoxuan YI ; Huan WANG ; Qi WANG ; Haijuan ZHI ; Junfang WU ; Dao Wen WANG ; Huiru TANG
Journal of Pharmaceutical Analysis 2025;15(7):101180-101180
Image 1.
7.A multicenter study of neonatal stroke in Shenzhen,China
Li-Xiu SHI ; Jin-Xing FENG ; Yan-Fang WEI ; Xin-Ru LU ; Yu-Xi ZHANG ; Lin-Ying YANG ; Sheng-Nan HE ; Pei-Juan CHEN ; Jing HAN ; Cheng CHEN ; Hui-Ying TU ; Zhang-Bin YU ; Jin-Jie HUANG ; Shu-Juan ZENG ; Wan-Ling CHEN ; Ying LIU ; Yan-Ping GUO ; Jiao-Yu MAO ; Xiao-Dong LI ; Qian-Shen ZHANG ; Zhi-Li XIE ; Mei-Ying HUANG ; Kun-Shan YAN ; Er-Ya YING ; Jun CHEN ; Yan-Rong WANG ; Ya-Ping LIU ; Bo SONG ; Hua-Yan LIU ; Xiao-Dong XIAO ; Hong TANG ; Yu-Na WANG ; Yin-Sha CAI ; Qi LONG ; Han-Qiang XU ; Hui-Zhan WANG ; Qian SUN ; Fang HAN ; Rui-Biao ZHANG ; Chuan-Zhong YANG ; Lei DOU ; Hui-Ju SHI ; Rui WANG ; Ping JIANG ; Shenzhen Neonatal Data Network
Chinese Journal of Contemporary Pediatrics 2024;26(5):450-455
Objective To investigate the incidence rate,clinical characteristics,and prognosis of neonatal stroke in Shenzhen,China.Methods Led by Shenzhen Children's Hospital,the Shenzhen Neonatal Data Collaboration Network organized 21 institutions to collect 36 cases of neonatal stroke from January 2020 to December 2022.The incidence,clinical characteristics,treatment,and prognosis of neonatal stroke in Shenzhen were analyzed.Results The incidence rate of neonatal stroke in 21 hospitals from 2020 to 2022 was 1/15 137,1/6 060,and 1/7 704,respectively.Ischemic stroke accounted for 75%(27/36);boys accounted for 64%(23/36).Among the 36 neonates,31(86%)had disease onset within 3 days after birth,and 19(53%)had convulsion as the initial presentation.Cerebral MRI showed that 22 neonates(61%)had left cerebral infarction and 13(36%)had basal ganglia infarction.Magnetic resonance angiography was performed for 12 neonates,among whom 9(75%)had involvement of the middle cerebral artery.Electroencephalography was performed for 29 neonates,with sharp waves in 21 neonates(72%)and seizures in 10 neonates(34%).Symptomatic/supportive treatment varied across different hospitals.Neonatal Behavioral Neurological Assessment was performed for 12 neonates(33%,12/36),with a mean score of(32±4)points.The prognosis of 27 neonates was followed up to around 12 months of age,with 44%(12/27)of the neonates having a good prognosis.Conclusions Ischemic stroke is the main type of neonatal stroke,often with convulsions as the initial presentation,involvement of the middle cerebral artery,sharp waves on electroencephalography,and a relatively low neurodevelopment score.Symptomatic/supportive treatment is the main treatment method,and some neonates tend to have a poor prognosis.
8.Progress of research into natural products that regulate TGF-β1/Smad pathway for the treatment of hepatic fibrosis
Kaiyang LI ; Xiaomei WU ; Jing HUANG ; Yun TANG ; Weixin GUO ; Qi ZHAO ; Mei YANG
Acta Laboratorium Animalis Scientia Sinica 2024;32(10):1320-1331
TGF-β1 is considered a key mediator in the formation of hepatic fibrosis and mainly acts by activating the downstream Smad signaling pathway.Smad2 and Smad3 are two major downstream regulators that promote TGF-β1-mediated tissue fibrosis,while Smad7 is a negative-feedback regulator of the TGF-β1/Smad pathway and inhibits TGF-β1-mediated hepatic fibrosis.A growing number of studies are showing that natural products can delay the progression of hepatic fibrosis by regulating the TGF-β1/Smad pathway,inhibiting HSC activation,and reducing ECM deposition.This article reviews the molecular mechanism of the TGF-β1/Smad signaling pathway in hepatic fibrosis,and summarizes the natural products that target the regulation of this pathway,providing a reference for research into the treatment of hepatic fibrosis.
9.Changing trends of the pathogenic spectrum of pulmonary infections in patients with human immunodeficiency virus infection/acquired immunodeficiency syndrome from 2017 to 2022
Suyue HUANG ; Hong CHEN ; Wei SONG ; Tangkai QI ; Zhenyan WANG ; Li LIU ; Jianjun SUN ; Yang TANG ; Shuibao XU ; Junyang YANG ; Bihe ZHAO ; Jiangrong WANG ; Jun CHEN ; Renfang ZHANG ; Yinzhong SHEN
Chinese Journal of Infectious Diseases 2024;42(4):225-232
Objective:To analyze the changes of pathogen spectrum of pulmonary infection in human immunodeficiency virus (HIV) infection/acquired immunodeficiency syndrome (AIDS) patients before and during coronavirus disease 2019 (COVID-19) epidemic.Methods:The clinical data of hospitalized HIV infection/AIDS patients with pulmonary infection confirmed by etiology and/or imaging examinations in the Department of Infection and Immunity, Shanghai Public Health Clinical Center, Fudan University from January 2017 to December 2022 were collected, including the types of pathogens, the peripheral blood CD4 + T lymphocyte counts at admission due to pulmonary infection, and the treatment outcome of the patients at discharge. The changes of pathogen spectrum of pulmonary infection before COVID-19 epidemic (2017 to 2019) and during the epidemic (2020 to 2022) were analyzed, and their effects on adverse treatment outcomes (death during hospitalization or automatic discharge) were analyzed. Statistical analysis was performed using the chi-square test, trend chi-square test or Kruskal-Wallis test. Results:The proportion of patients with pulmonary infection during the epidemic was lower than that before the epidemic, the difference was statistically significant (23.01%(1 061/4 612) vs 28.68%(1 463/5 102), χ2=40.76, P<0.001). From 2017 to 2022, the proportion of hospitalized HIV infection/AIDS patients with pulmonary infection showed a downward trend ( χ2trend=8.81, P<0.001). Among the pathogens causing pulmonary infection from 2017 to 2022, bacteria, mycobacteria, and fungi were the three main pathogenic pathogens, accounting for 48.77%(1 231/2 524), 32.13%(811/2 524), and 14.34%(362/2 524), respectively. The proportion of bacterial infection decreased from 55.02%(805/1 463) before the epidemic to 40.15%(426/1 061) during the epidemic, and the proportion of fungal infection increased from 9.23%(135/1 463) to 21.39%(227/1 061), the differences were both statistically significant ( χ2=54.45 and 74.11, respectively, both P<0.001). There was no significant difference in the proportion of mycobacteria between before and during the epidemic ( P=0.169), but the proportion of Mycobacterium tuberculosis (MTB) infection decreased from 22.01%(322/1 463) before the epidemic to 15.08%(160/1 061) during the epidemic, while the proportion of nontuberculous mycobacterium (NTM) infection increased from 7.11%(104/463) to 11.78%(125/1 061), the differences were both statistically significant ( χ2=19.11 and 16.28, respectively, both P<0.001). There was a significant difference in the pathogen spectrum of pulmonary infection before and during the epidemic ( χ2=128.91, P<0.001). There was a significant difference in the peripheral blood CD4 + T lymphocyte counts of patients with MTB, NTM, Pnenmocystis, Talaromycosis marneffei and Cryptococcus infection ( H=71.92, P<0.001). There were 63.74%(109/171) of Pneumocystis infection and 67.65%(69/102) of Talaromycosis marneffei infection occurred in patients with CD4 + T lymphocyte count<50/μL. Among the patients with pulmonary infection, the proportion of patients with adverse treatment outcomes during the epidemic was higher than that before the epidemic, and the difference was statistically significant (13.29%(141/1 061) vs 10.39%(152/1 463), χ2=5.04, P=0.025). Among the patients with pulmonary infection who developed adverse treatment outcomes, the top three pathogens (from high to low) were bacteria (63.48%(186/293)), mycobacteria (27.65%(81/293)), and fungi (6.83%(20/293)). The proportion of adverse treatment outcomes caused by bacterial infection decreased during the epidemic compared with that of before the epidemic (71.71%(109/152) vs 54.61%(77/141), χ2=9.23, P=0.002), while the proportion of adverse treatment outcomes caused by fungal infection increased (2.63%(4/152) vs 11.35%(16/141), χ2=8.74, P=0.003), and the differences were both statistically significant. The proportion of adverse treatment outcomes caused by mycobacterial infection increased, but without statistically significant (23.03%(35/152) vs 32.62%(46/141), χ2=3.37, P=0.066), among which there was no difference in the proportion of adverse treatment outcomes caused by MTB infection (13.82%(21/152) vs 14.89%(21/141), χ2=0.07, P=0.793), while the proportion of adverse treatment outcomes caused by NTM infection increased (5.92%(9/152) vs 14.89%(21/141), χ2=6.41, P=0.011). There was a significant difference in the pathogen spectrum of pulmonary infection patients with adverse treatment outcomes before and during the epidemic ( χ2=12.22, P=0.007). Conclusions:Among the spectrum of pathogens causing pulmonary infection and adverse treatment outcomes of HIV infection/AIDS patients during the epidemic, compared with that before the epidemic, the proportion of bacterial decreases, while the proportion of fungi increases, and the proportion of mycobacteria remains stable with the proportion of NTM increasing. The proportion of MTB causing pulmonary infection decreases, while the proportion of MTB causing adverse treatment outcomes remains stable.
10.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.

Result Analysis
Print
Save
E-mail