1.Identification of Enterovirus C105 for the first time in New Zealand
Angela Todd ; Susan Taylor ; Q Sue Huang
Western Pacific Surveillance and Response 2015;6(1):60-61
We report on the first identification of Enterovirus C105 (EV-C105) in New Zealand from a 52-year-old male hospitalized with mild respiratory tract symptoms. Enterovirus genotyping was performed by partial sequencing of the VP1 region of the enterovirus genome. This highlights the importance of enterovirus surveillance for detection of the importation of new genotypes such as EV-C105, thus allowing a better understanding of the roles they play in disease.
2.Tracking oseltamivir-resistance in New Zealand influenza viruses during a medicine reclassification in 2007, a resistant-virus importation in 2008 and the 2009 pandemic
Richard J Hall ; Matthew Peacey ; Jacqui C Ralston ; Danielle J de Joux ; Judy Bocacao ; Mackenzie Nicol ; Molly Ziki ; Wendy Gunn ; Jing Wang ; Q Sue Huang
Western Pacific Surveillance and Response 2012;3(4):71-77
3.Implementing hospital-based surveillance for severe acute respiratory infections caused by influenza and other respiratory pathogens in New Zealand
Q Sue Huang ; Michael Baker ; Colin McArthur ; Sally Roberts ; Deborah Williamson ; Cameron Grant ; Adrian Trenholme ; Conroy Wong ; Susan Taylor ; Lyndsay LeComte ; Graham Mackereth ; Don Bandaranayake ; Tim Wood ; Ange Bissielo ; Ruth Se ; Nikki Turner ; Nevil Pierse ; Paul Thomas ; Richard Webby ; Diane Gross ; Jazmin Duque ; Mark Thompson ; Marc-Alain Widdowson
Western Pacific Surveillance and Response 2014;5(2):23-30
Recent experience with pandemic influenza A(H1N1)pdm09 highlighted the importance of global surveillance for severe respiratory disease to support pandemic preparedness and seasonal influenza control. Improved surveillance in the southern hemisphere is needed to provide critical data on influenza epidemiology, disease burden, circulating strains and effectiveness of influenza prevention and control measures. Hospital-based surveillance for severe acute respiratory infection (SARI) cases was established in New Zealand on 30 April 2012. The aims were to measure incidence, prevalence, risk factors, clinical spectrum and outcomes for SARI and associated influenza and other respiratory pathogen cases as well as to understand influenza contribution to patients not meeting SARI case definition.All inpatients with suspected respiratory infections who were admitted overnight to the study hospitals were screened daily. If a patient met the World Health Organization’s SARI case definition, a respiratory specimen was tested for influenza and other respiratory pathogens. A case report form captured demographics, history of presenting illness, co-morbidities, disease course and outcome and risk factors. These data were supplemented from electronic clinical records and other linked data sources.Hospital-based SARI surveillance has been implemented and is fully functioning in New Zealand. Active, prospective, continuous, hospital-based SARI surveillance is useful in supporting pandemic preparedness for emerging influenza A(H7N9) virus infections and seasonal influenza prevention and control.
4.Circulation of influenza and other respiratory viruses during the COVID-19 pandemic in Australia and New Zealand, 2020–2021
Genevieve K O' ; Neill ; Janette Taylor ; Jen Kok ; Dominic E Dwyer ; Meik Dilcher ; Harry Hua ; Avram Levy ; David Smith ; Cara A Minney-Smith ; Timothy Wood ; Lauren Jelley ; Q Sue Huang ; Adrian Trenholme ; Gary McAuliffe ; Ian Barr ; Sheena G Sullivan
Western Pacific Surveillance and Response 2023;14(3):13-22
Objective: Circulation patterns of influenza and other respiratory viruses have been globally disrupted since the emergence of coronavirus disease (COVID-19) and the introduction of public health and social measures (PHSMs) aimed at reducing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission.
Methods: We reviewed respiratory virus laboratory data, Google mobility data and PHSMs in five geographically diverse regions in Australia and New Zealand. We also described respiratory virus activity from January 2017 to August 2021.
Results: We observed a change in the prevalence of circulating respiratory viruses following the emergence of SARS-CoV-2 in early 2020. Influenza activity levels were very low in all regions, lower than those recorded in 2017–2019, with less than 1% of laboratory samples testing positive for influenza virus. In contrast, rates of human rhinovirus infection were increased. Respiratory syncytial virus (RSV) activity was delayed; however, once it returned, most regions experienced activity levels well above those seen in 2017–2019. The timing of the resurgence in the circulation of both rhinovirus and RSV differed within and between the two countries.
Discussion: The findings of this study suggest that as domestic and international borders are opened up and other COVID-19 PHSMs are lifted, clinicians and public health professionals should be prepared for resurgences in influenza and other respiratory viruses. Recent patterns in RSV activity suggest that these resurgences in non-COVID-19 viruses have the potential to occur out of season and with increased impact.