1.The in Vitro Maturation of the Mouse Oocyte.
Yonsei Medical Journal 1975;16(1):18-28
Mouse follicular oocytes, denuded and intact, were cultured in pyruvate salt sol and glutamine salt sol supplemented bovine serum albumin to compare the maturation rate. Glutamine has no effect on maturation of the denuded mouse oocyte but has an effect on maturation of the intact oocyte by increasing the maturation rate, depending on the increased concentration of glutamine (0.4 mM to 2 mM). Changes in osmolarity of the operation medium from 280 mOsm to 310 mOsm has no discernible effect on the oocyte maturation. A high frequency of abnormal 1st polar bodies was observed in pyruvate salt sol. and this may be due to the increased energy source in the cytoplasm of the 1st polar body when the po1ar body was extruded into the perivitelline space after the 1st meiosis.
Animal
;
Cell Division
;
Female
;
Glutamine/metabolism
;
In Vitro
;
Mice
;
Oocytes/cytology
;
Oocytes/metabolism*
;
Ovum/metabolism*
;
Pyruvates/metabolism
2.The in Vitro Maturation of the Mouse Oocyte.
Yonsei Medical Journal 1975;16(1):18-28
Mouse follicular oocytes, denuded and intact, were cultured in pyruvate salt sol and glutamine salt sol supplemented bovine serum albumin to compare the maturation rate. Glutamine has no effect on maturation of the denuded mouse oocyte but has an effect on maturation of the intact oocyte by increasing the maturation rate, depending on the increased concentration of glutamine (0.4 mM to 2 mM). Changes in osmolarity of the operation medium from 280 mOsm to 310 mOsm has no discernible effect on the oocyte maturation. A high frequency of abnormal 1st polar bodies was observed in pyruvate salt sol. and this may be due to the increased energy source in the cytoplasm of the 1st polar body when the po1ar body was extruded into the perivitelline space after the 1st meiosis.
Animal
;
Cell Division
;
Female
;
Glutamine/metabolism
;
In Vitro
;
Mice
;
Oocytes/cytology
;
Oocytes/metabolism*
;
Ovum/metabolism*
;
Pyruvates/metabolism
3.Effects of hypotensive anesthesia with sodium nitroprusside or isoflurane on hemodynamic and metabolic changes.
Yong Taek NAM ; Jin Su KIM ; Kwang Won PARK
Yonsei Medical Journal 1992;33(4):320-325
The hemodynamic and metabolic changes during induced hypotension with isoflurane (isoflurane group) or sodium nitroprusside (SNP group) were observed in twelve mongrel dogs. These hypotensive effects were evaluated at 30 and 60 minutes after the mean arterial blood pressure was lowered to 50% from the control. Hemodynamic changes were evaluated by measuring systemic arterial blood pressure, heart rate, central venous pressure, pulmonary capillary wedge pressure, cardiac output, systemic vascular resistance and pulmonary vascular resistance. Metabolic changes were evaluated by measuring serum lactate and pyruvate, arterio-venous oxygen content difference and oxygen extraction rate. We also compared the ventilatory effect of hypotensive anesthesia by blood gas analysis. The results were as follows: 1. Isoflurane inhalation 2-4% or SNP infusion 10-20 micrograms/kg/min was required to reduce the mean arterial pressure to 50% of the control. 2. Heart rate was decreased slightly in the isoflurane group but significantly decreased in the SNP group. 3. There were no significant changes in central venous pressure and pulmonary capillary wedge pressure in either group. 4. Cardiac output was reduced in both groups but was more severe in the isoflurane group. 5. Systemic vascular resistance was decreased by 36% in the isoflurane group and 47% in the SNP group. 6. Acidosis was apparent and did not recover to the control until 30 minutes after recovery in the SNP group. 7. Arterio-venous oxygen difference was increased during hypotension in the isoflurane group probably due to decreased cardiac output. 8. The lactate/pyruvate ratio increased slightly in the SNP group.
Anesthesia
;
Animal
;
Dogs
;
*Hemodynamics
;
*Hypotension, Controlled
;
*Isoflurane
;
Lactates/metabolism
;
*Nitroprusside
;
Pyruvates/metabolism
;
Pyruvic Acid
4.Effect of Anti-Oxidative of Ethyl Pyruvate and Taurine on the Red Blood Cell Storage at 4 ℃.
Shu-Qiang GAO ; Shu-Hui GAO ; Chen-Hui ZHU ; Xiao-Yan YUAN ; Li-Xia REN
Journal of Experimental Hematology 2022;30(3):890-896
OBJECTIVE:
To investigate the anti-oxidative effect of ethyl pyruvate (EP) and taurine (TAU) on the quality of red blood cells stored at 4±2 ℃, hemolysis, energy metabolism and lipid peroxidation of the red blood cells in the preservation solution were studied at different intervals.
METHODS:
At 4±2 ℃, the deleukocyte red blood cells were stored in the citrate-phosphate-dextrosesaline-adenine-1 (CPDA-1) preservation (control group), preservation solution with EP (EP-AS), and TAU (TAU-AS) for long-term preservation. The enzyme-linked immunoassay and automatic blood cell analyzer were used to detect hemolysis and erythrocyte parameters. Adenine nucleoside triphosphate (ATP), glycerol 2,3-diphosphate (2,3-DPG) and malondialdehyde (MDA) kits were used to test the ATP, 2,3-DPG and MDA concentration.
RESULTS:
During the preservation, the rate of red blood cell hemolysis in EP-AS and TAU-AS groups were significantly lower than that in CPDA-1 group (P<0.01). The MCV of EP-AS group was increased with the preservation time (r=0.71), while the MCV of the TAU-AS group was significantly lower than that in the other two groups (P<0.05). The concentration of ATP and MDA in EP-AS and TAU-AS groups were significantly higher than that in CPDA-1 group at the 14th day (P<0.01). The concentrations of 2,3-DPG in the EP-AS and TAU-AS groups were significantly higher than that in the CPDA-1 group from the 7th day (P<0.01).
CONCLUSION
EP and TAU can significantly reduce the red blood cell hemolysis rate, inhibit the lipid peroxidation level of red blood cells, and improve the energy metabolism of red blood cells during storage. The mechanism of EP and TAU may be related to their antioxidation and membrane protection effect, so as to improve the red blood cell quality and extend the preservation time.
2,3-Diphosphoglycerate/metabolism*
;
Adenine
;
Adenosine Triphosphate/metabolism*
;
Blood Preservation
;
Citrates/pharmacology*
;
Erythrocytes/metabolism*
;
Glucose/pharmacology*
;
Hemolysis
;
Humans
;
Pyruvates
;
Taurine/pharmacology*
5.Effect of 3-bromopyruvate on mitochondrial membrane potential and apoptosis of human breast carcinoma SK-BR-3 cells.
Yuanyuan ZHANG ; Zhe LIU ; Qianwen ZHANG ; Zhenhua CHAO ; Pei ZHANG ; Fei XIA ; Chenchen JIANG ; Hao LIU ; Zhiwen JIANG
Journal of Southern Medical University 2013;33(9):1304-1307
OBJECTIVETo study the effect of glycolysis inhibitor 3-bromopyruvate (3-BrPA) in inducing apoptosis of human breast carcinoma cells SK-BR-3 and the possible mechanism.
METHODSMTT assay was used to detect the growth inhibition induced by 3-BrPA in breast cancer cells SK-BR-3. The apoptotic cells were detected by flow cytometry with propidium iodide (PI). ATP levels in the cells were detected by ATP assay kit, and DHE fluorescent probe technique was used to determine superoxide anion levels; the mitochondrial membrane potential was assessed using JC-1 staining assay.
RESULTSMTT assay showed that the proliferation of SK-BR-3 cells was inhibited by 3-BrPA in a time- and concentration-dependent manner. Exposure to 80, 160, and 320 µmol·L(-1) 3-BrPA for 24 h resulted in cell apoptosis rates of 6.7%, 22.3%, and 79.6%, respectively, and the intracellular ATP levels of SK-BR-3 cells treated with 80, 160, 320 µmol·L(-1) 3-BrPA for 5 h were 87.7%, 60.6%, and 23.7% of the control levels. 3-BrPA at 160 µmol·L(-1) increased reactive oxygen levels and lowered mitochondrial membrane potential of SK-BR-3 cells.
CONCLUSION3-BrPA can inhibit cell proliferation, reduce the mitochondrial membrane potential and induce apoptosis in SK-BR-3 cells, the mechanism of which may involve a reduced ATP level by inhibiting glycolysis and increasing the reactive oxygen level in the cells.
Apoptosis ; drug effects ; Cell Line, Tumor ; Female ; Glycolysis ; Humans ; Membrane Potential, Mitochondrial ; drug effects ; Pyruvates ; pharmacology ; Reactive Oxygen Species ; metabolism
6.Toxicity and metabolism of 3-bromopyruvate in Caenorhabditis elegans.
Qiao-Ling GU ; Yan ZHANG ; Xi-Mei FU ; Zhao-Lian LU ; Yao YU ; Gen CHEN ; Rong MA ; Wei KOU ; Yong-Mei LAN
Journal of Zhejiang University. Science. B 2020;21(1):77-86
In this study, we aimed to evaluate the toxic effects, changes in life span, and expression of various metabolism-related genes in Caenorhabditis elegans, using RNA interference (RNAi) and mutant strains, after 3-bromopyruvate (3-BrPA) treatment. C. elegans was treated with various concentrations of 3-BrPA on nematode growth medium (NGM) plates, and their survival was monitored every 24 h. The expression of genes related to metabolism was measured by the real-time fluorescent quantitative polymerase chain reaction (qPCR). Nematode survival in the presence of 3-BrPA was also studied after silencing three hexokinase (HK) genes. The average life span of C. elegans cultured on NGM with 3-BrPA was shortened to 5.7 d compared with 7.7 d in the control group. hxk-1, hxk-2, and hxk-3 were overexpressed after the treatment with 3-BrPA. After successfully interfering hxk-1, hxk-2, and hxk-3, the 50% lethal concentration (LC50) of all mutant nematodes decreased with 3-BrPA treatment for 24 h compared with that of the control. All the cyp35 genes tested were overexpressed, except cyp-35B3. The induction of cyp-35A1 expression was most obvious. The LC50 values of the mutant strains cyp-35A1, cyp-35A2, cyp-35A4, cyp-35B3, and cyp-35C1 were lower than that of the control. Thus, the toxicity of 3-BrPA is closely related to its effect on hexokinase metabolism in nematodes, and the cyp-35 family plays a key role in the metabolism of 3-BrPA.
Animals
;
Caenorhabditis elegans/metabolism*
;
Caenorhabditis elegans Proteins/genetics*
;
Cytochrome P-450 Enzyme System/genetics*
;
Hexokinase/physiology*
;
Pyruvates/toxicity*
;
RNA, Messenger/analysis*
7.Ethyl Pyruvate Has Anti-Inflammatory and Delayed Myocardial Protective Effects after Regional Ischemia/Reperfusion Injury.
In Seok JANG ; Mi Young PARK ; Il Woo SHIN ; Ju Tae SOHN ; Heon Keun LEE ; Young Kyun CHUNG
Yonsei Medical Journal 2010;51(6):838-844
PURPOSE: Ethyl pyruvate has anti-inflammatory properties and protects organs from ischemia/reperfusion (I/R)-induced tissue injury. The aim of this study was to determine whether ethyl pyruvate decreases the inflammatory response after regional I/R injury and whether ethyl pyruvate protects against delayed regional I/R injury in an in vivo rat heart model after a 24 hours reperfusion. MATERIALS AND METHODS: Rats were randomized to receive lactated Ringer's solution or ethyl pyruvate dissolved in Ringer's solution, which was given by intraperitoneal injection 1 hour prior to ischemia. Rats were subjected to 30 min of ischemia followed by reperfusion of the left coronary artery territory. After a 2 hours reperfusion, nuclear factor kappaB, myocardial myeloperoxidase activity, and inflammatory cytokine levels were determined. After the 24 hours reperfusion, the hemodynamic function and myocardial infarct size were evaluated. RESULTS: At 2 hours after I/R injury, ethyl pyruvate attenuated I/R-induced nuclear factor kappaB translocation and reduced myeloperoxidase activity in myocardium. The plasma circulating levels of inflammatory cytokines decreased significantly in the ethyl pyruvate-treated group. At 24 hours after I/R injury, ethyl pyruvate significantly improved cardiac function and reduced infarct size after regional I/R injury. CONCLUSION: Ethyl pyruvate has the ability to inhibit neutrophil activation, inflammatory cytokine release, and nuclear factor kappaB translocation. Ethyl pyruvate is associated with a delayed myocardial protective effect after regional I/R injury in an in vivo rat heart model.
Animals
;
Anti-Inflammatory Agents/*pharmacology
;
Cell Nucleus/metabolism
;
Cytoplasm/metabolism
;
Heart/physiopathology
;
Inflammation
;
Male
;
Myocardial Infarction/prevention & control
;
Myocardium/*metabolism
;
NF-kappa B/metabolism
;
Peroxidase/metabolism
;
Pyruvates/*pharmacology
;
Rats
;
Rats, Sprague-Dawley
;
Reperfusion Injury/*drug therapy/*metabolism
8.Influence of splenic high mobility group box-1 protein on immune function of regulatory T lymphocytes in scald rats.
Li-feng HUANG ; Feng-hua YAO ; Yong-ming YAO ; Li-tian ZHANG ; Ning DONG ; Zhi-yong SHENG
Chinese Journal of Burns 2010;26(2):104-108
OBJECTIVETo observe the influence of high mobility group box-1 protein (HMGB1) derived from spleen on the phenotype of regulatory T lymphocytes (Treg) and HMGB1-mediated immune function in severely scalded rats after delayed resuscitation.
METHODSOne hundred and four Wistar rats were divided into normal control group (NC, n = 8), sham scald group (SS, n = 32), scald group (S, n = 32), and ethyl pyruvate (EP) treatment group (EPT, n = 32) according to the random comparison table. Rats in the latter 2 groups were subjected to 30%TBSA full-thickness scald, which were intraperitoneally injected with Ringer solution or EP solution at post scald hour (PSH) 6 (delayed antishock treatment) and administered with 4 mL Ringer solution or EP solution per 12 hours after PSH 12 till PSH 48. Rats in SS group were treated the same as that of S group except for sham scald with 37 degrees C water. Injured rats were sacrificed at post scald day (PSD) 1, 3, 5, 7 (rats in NC group were also sacrificed), and CD4(+)CD25(+)Treg were isolated from spleen with magnetic-activated cell sorting method. The content of HMGB1 in spleen and IL-2 level in supernatant were determined with ELISA. The expression of cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) on Treg was determined with flow cytometry, and the proliferation activity of T lymphocytes was also detected (recorded as absorbance value). Data were processed with analysis of variance among groups and independent samples t test.
RESULTS(1) Compared with that of rats in SS group and EPT group, the expression of splenic HMGB1 in S group increased significantly on PSD 1 through PSD 7 [peaked on PSD 1: (46.7 +/- 8.3) ng/mg protein]. (2) Compared with that in SS group, the expression of CTLA-4 in S group was enhanced significantly on PSD 1 through PSD 5 (with t value respectively 10.459, 12.051, 4.029, P < 0.05 or P < 0.01); while that in EPT group decreased significantly on PSD 1 through PSD 7 as compared with that from S group (with t value respectively 2.796, 9.913, 9.581, 10.022, P < 0.05 or P < 0.01). (3) Compared with that of rats in SS group, the proliferation activity of T lymphocytes in S group was markedly suppressed on PSD 1 through PSD 7 (nadir on PSD1: 0.167 +/- 0.059), and release of IL-2 was decreased significantly [nadir on PSD 5: (44 +/- 24) pg/mL]. T lymphocytes proliferation activity was restored and excretion of IL-2 increased in EPT group as compared respectively with that of S group at each time point.
CONCLUSIONSThe release of HMGB1 may stimulate splenic Treg to mature, thereby induce suppression of proliferation activity of T lymphocytes and immune function. EP can ameliorate immune dysfunction in animals with delayed resuscitation through inhibiting the synthesis and release of HMGB1.
Animals ; Antigens, CD ; metabolism ; Burns ; immunology ; CTLA-4 Antigen ; Cell Proliferation ; HMGB1 Protein ; metabolism ; Interleukin-2 ; metabolism ; Male ; Pyruvates ; pharmacology ; Rats ; Rats, Wistar ; Spleen ; cytology ; immunology ; T-Lymphocytes, Regulatory ; cytology ; immunology
9.Effect of glycolytic inhibitor 3-BrPA on the proliferation and apoptosis of mouse splenic lymphocytes in mixed lymphocytes culture.
Ruiqing ZHOU ; Jing WANG ; Dafa QIU ; Xiaomin NIU ; Ziwen GUO ; Huiqing HE ; Xiaojun XU
Chinese Journal of Hematology 2014;35(7):637-640
OBJECTIVETo study the effect of glycolytic inhibitor 3-Bromopyruvate (3-BrPA) on the proliferation and apoptosis of mouse spleen lymphocytes and explore its mechanism.
METHODSAn one-way mixed lymphocyte culture (MLC) system was established, including BALB/c mouse spleen cells (H-2d) as stimulator and C57BL/6 mouse spleen cells (H-2b) as responder. With treatment of 3-BrPA at different concentrations (0-200 μmol/L), lymphocyte proliferation capacity was detected by the CCK-8 method, the expression of CD3, CD4, and CD8 by flow cytometry, and the concentrations of cytokine interleukin (IL)-4 and interferon (IFN)-γ in the supernatant by ELISA.
RESULTSAt a middle or high dose (over 20 μmol/L), 3-BrPA displayed a dose-dependent inhibitory effect on lymphocyte proliferation in the MLC system. The 50% inhibitory concentration (IC50) were 48.6, 41.2, and 41.9 μmol/L after 24, 36, and 48 h culture, respectively. With treatment of 50 μmol/L 3-BrPA, the IFN-γ level [(164.25 ± 20.14) ng/L] was significantly lower, compared with control [(277.61 ± 18.46) ng/L]. The IL-4 level [(31.06 ± 6.06) ng/L] was significantly higher, compared with control [(28.64 ± 3.97) ng/L]. Consequently, the IFN-γ/IL-4 ratio decreased significantly.
CONCLUSIONThese results indicate that 3-BrPA had a significant inhibitory effect on the proliferation of mouse spleen lymphocytes cultured in MLC system, accompanied with the Th2-biased secretion of cytokines.
Animals ; Apoptosis ; drug effects ; Cell Proliferation ; drug effects ; Cells, Cultured ; Interferon-gamma ; metabolism ; Interleukin-4 ; metabolism ; Lymphocyte Culture Test, Mixed ; Male ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C57BL ; Pyruvates ; pharmacology ; Spleen ; cytology ; metabolism
10.3-bromopyruvate enhances cisplatin sensitivity of hepatocellular carcinoma cells in vitro.
Surong ZHAO ; Yuanyuan ZHANG ; Chengzhu WU ; Hongmei LI ; Chenchen JIANG ; Zhiwen JIANG ; Hao LIU
Journal of Southern Medical University 2014;34(1):25-30
OBJECTIVETo investigate the effect of 3-bromopyruvate (3-BP) in sensitizing hepatocellular carcinoma cells to cisplatin-induced apoptosis and its possible mechanism.
METHODSThe growth inhibition of HepG2 and SMMC7721 cells following exposures to different concentrations of 3-BP and cisplatin was measured by MTT assay. The apoptosis of cells treated with 100 µmol/L 3-BP with or without 8 µmol/L cisplatin was assessed using flow cytometry with PI staining, and the activity of caspase-3 and intracellular ATP level were detected using commercial detection kits; the expression of XIAP and PARP was analyzed using Western blotting.
RESULTS3-BP produced obvious inhibitory effects on HepG2 and SMMC7721 cells at the concentrations of 50-400 µmol/L with IC50 values of 238.9∓13.9 µmol/L and 278.7∓11.7 µmol/L for a 48-h treatment, respectively. Cisplatin also inhibited the growth of HepG2 and SMMC7721 cells at the concentrations of 2-32 µmol/L, with IC50 values of 16.4∓0.9 µmol/L and 20.9∓1.8 µmol/L after a 48-h treatment, respectively. Treatment with 100 µmol/L 3-BP combined with 8 µmol/L cisplatin for 48 h resulted in a growth inhibition rate of (60.6∓2.2)% in HepG2 cells and (56.8∓2.3)% in SMMC7721 cells, which were significantly higher than those in cells treated with 3-BP or cisplatin alone. The combined treatment for 48 h induced an apoptotic rate of (51.1∓4.3)% in HepG2 cells and (46.5∓3.9)% in SMMC7721 cells, which were also markedly higher than those in cells with 3-BP or cisplatin treatment alone.
CONCLUSION3-BP can sensitize HepG2 and SMMC7721 cells to cisplatin-induced apoptosis possibly by causing intracellular ATP deficiency, down-regulating XIAP, and increasing caspase-3 activity.
Adenosine Triphosphate ; metabolism ; Antineoplastic Agents ; pharmacology ; Apoptosis ; drug effects ; Carcinoma, Hepatocellular ; pathology ; Caspase 3 ; metabolism ; Cisplatin ; pharmacology ; Hep G2 Cells ; Humans ; Liver Neoplasms ; pathology ; Pyruvates ; pharmacology ; X-Linked Inhibitor of Apoptosis Protein ; metabolism