1.Advanced glycated albumin induces macrophage pyroptosis via upregulating nucleotide-binding oligomerization domain-like receptor protein 3.
Zhao-Qiang ZHANG ; Yi-Fan YANG ; Jing-Rui YAN ; Fei YU ; Xiao-Xu WANG ; Zhi-Chao WANG ; Hua TIAN ; Shu-Tong YAO
Acta Physiologica Sinica 2019;71(6):846-854
The purpose of the present study was to investigate the effect of advanced glycated albumin (AGE-alb) on pyroptosis of macrophages and the underlying molecular mechanisms. RAW264.7 macrophages were treated with AGE-alb (1, 2, 4 and 6 g/L) and control albumin (C-alb, 4 g/L) for 24 h, or preincubated with MCC950 (1 μmol/L) for 1 h and then treated with AGE-alb (4 g/L) for 24 h. Cell viability and caspase-1 activity were measured by MTT and assay kits, respectively. Lactate dehydrogenase (LDH) activity and the levels of interleukin-1β (IL-1β) and IL-18 in media were detected. Cell death degree was evaluated by TUNEL and Hoechst 33342/PI staining. The protein levels of nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3), procaspase-1 and cleaved caspase-1 were assessed by Western blot. The results showed that AGE-alb treatment caused obvious decrease in cell viability and increases in LDH leakage and the percentages of TUNEL- or PI-positive cells in a concentration-dependent manner. Additionally, AGE-alb promoted IL-1β and IL-18 secretion, upregulated NLRP3 expression, and increased caspase-1 activity especially at the dose of 4 and 6 g/L. However, MCC950 (an NLRP3 inhibitor) pretreatment inhibited significantly the decrease in cell viability and the increases in LDH leakage and percentages of TUNEL- or PI-positive cells induced by AGE-alb. Furthermore, MCC950 attenuated obviously AGE-alb-induced IL-1β and IL-18 secretion and caspase-1 activation. These results indicate that AGE-alb may induce macrophage pyroptosis, and the mechanism is at least partially by activating NLRP3-caspase-1 pathway.
Caspase 1
;
Gene Expression Regulation
;
drug effects
;
Interleukin-1beta
;
genetics
;
Macrophages
;
drug effects
;
NLR Family, Pyrin Domain-Containing 3 Protein
;
genetics
;
Pyroptosis
;
drug effects
;
Serum Albumin
;
pharmacology
2.Xuebijing alleviates LPS-induced acute lung injury by downregulating pro-inflammatory cytokine production and inhibiting gasdermin-E-mediated pyroptosis of alveolar epithelial cells.
Cuiping ZHANG ; Xiaoyan CHEN ; Tianchang WEI ; Juan SONG ; Xinjun TANG ; Jing BI ; Cuicui CHEN ; Jian ZHOU ; Xiao SU ; Yuanlin SONG
Chinese Journal of Natural Medicines (English Ed.) 2023;21(8):576-588
Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) is characterized by diffuse alveolar injury primarily caused by an excessive inflammatory response. Regrettably, the lack of effective pharmacotherapy currently available contributes to the high mortality rate in patients with this condition. Xuebijing (XBJ), a traditional Chinese medicine recognized for its potent anti-inflammatory properties, exhibits promise as a potential therapeutic agent for ALI/ARDS. This study aimed to explore the preventive effects of XBJ on ALI and its underlying mechanism. To this end, we established an LPS-induced ALI model and treated ALI mice with XBJ. Our results demonstrated that pre-treatment with XBJ significantly alleviated lung inflammation and increased the survival rate of ALI mice by 37.5%. Moreover, XBJ substantially suppressed the production of TNF-α, IL-6, and IL-1β in the lung tissue. Subsequently, we performed a network pharmacology analysis and identified identified 109 potential target genes of XBJ that were mainly involved in multiple signaling pathways related to programmed cell death and anti-inflammatory responses. Furthermore, we found that XBJ exerted its inhibitory effect on gasdermin-E-mediated pyroptosis of lung cells by suppressing TNF-α production. Therefore, this study not only establishes the preventive efficacy of XBJ in ALI but also reveals its role in protecting alveolar epithelial cells against gasdermin-E-mediated pyroptosis by reducing TNF-α release.
Animals
;
Mice
;
Alveolar Epithelial Cells
;
Pyroptosis
;
Gasdermins
;
Lipopolysaccharides/adverse effects*
;
Tumor Necrosis Factor-alpha
;
Acute Lung Injury/drug therapy*
;
Respiratory Distress Syndrome
3.Use of Tripterygium wilfordii Hook F for immune-mediated inflammatory diseases: progress and future prospects.
Cong-Ying SONG ; Ying-Ge XU ; Yuan-Qiang LU
Journal of Zhejiang University. Science. B 2020;21(4):280-290
Tripterygium wilfordii Hook F has significant anti-inflammatory and immunosuppressive properties and is widely used for treating autoimmune and inflammatory diseases such as rheumatoid arthritis, systemic lupus erythematosus, and kidney disease, especially in traditional Chinese medicine. The mechanisms underlying its effects may be diverse but they remain unclear, and its toxicity and side effects limit its wider clinical application. This review summarizes the clinical application of Tripterygium wilfordii Hook F in recent years, as well as the results of studies into its mechanisms and toxicity, to provide a reference for its future clinical application.
Animals
;
Anti-Inflammatory Agents/pharmacology*
;
Arthritis, Rheumatoid/drug therapy*
;
Drugs, Chinese Herbal/therapeutic use*
;
Humans
;
Immunosuppressive Agents/pharmacology*
;
Inflammation/drug therapy*
;
Inflammatory Bowel Diseases/drug therapy*
;
Medicine, Chinese Traditional
;
Pyroptosis/drug effects*
;
Tripterygium
4.Inhibition of Alveolar Macrophage Pyroptosis Reduces Lipopolysaccharide-induced Acute Lung Injury in Mice.
Dong-Dong WU ; Pin-Hua PAN ; Ben LIU ; Xiao-Li SU ; Le-Meng ZHANG ; Hong-Yi TAN ; Zu CAO ; Zuo-Ren ZHOU ; Hai-Tao LI ; Hao-Si LI ; Li HUANG ; Yuan-Yuan LI
Chinese Medical Journal 2015;128(19):2638-2645
BACKGROUNDPyroptosis is the term for caspase-1-dependent cell death associated with pro-inflammatory cytokines. The role of alveolar macrophage (AM) pyroptosis in the pathogenesis of the acute lung injury and acute respiratory distress syndrome (ALI/ARDS) remains unclear.
METHODSC57BL/6 wild-type mice were assigned to sham, lipopolysaccharide (LPS) + vehicle, LPS + acetyl-tyrosyl-valyl- alanyl-aspartyl-chloromethylketone (Ac-YVAD-CMK) and LPS + Z-Asp-Glu-Val-Asp-fluoromethylketone groups. Mice were given intraperitoneal (IP) injections of LPS. Drugs were IP injected 1 h before LPS administration. Mice were sacrificed 16 h after LPS administration, and AMs were isolated. Western blot analysis for active caspase-1 and cleaved caspase-3, evaluation of lung injury and a cytokine release analysis were performed. AMs were treated with LPS and adenosine triphosphate (ATP); caspase-1-dependent cell death was evaluated using flow cytometry; the apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) pyroptosomes were examined by immunofluorescence.
RESULTSThe expression of activated caspase-1 in AMs was enhanced following LPS challenge compared with the sham group. In the ex vivo study, the caspase-1/propidium iodide-positive cells, caspase-1 specks and ASC pyroptosomes were up-regulated in AMs following LPS/ATP stimulation. The specific caspase-1 inhibitor Ac-YVAD-CMK inhibited the activation of caspase-1 and pyroptotic cell death. Ac-YVAD-CMK also reduced the lung injury, pulmonary edema and total protein in bronchoalveolar lavage fluid (BALF). In addition, Ac-YVAD-CMK significantly inhibited interleukin-α2 (IL-1α2) release both in serum and BALF and reduced the levels of IL-18, tumor necrosis factor-α± (TNF-α±), High Mobility Group Box 1 (HMGB1) in BALF during LPS-induced ALI/ARDS.
CONCLUSIONSThis study reported AM pyroptosis during LPS-induced ALI/ARDS in mice and has demonstrated that Ac-YVAD-CMK can prevent AM-induced pyroptosis and lung injury. These preliminary findings may form the basis for further studies to evaluate this pathway as a target for prevention or reduction of ALI/ARDS.
Acute Lung Injury ; chemically induced ; prevention & control ; Amino Acid Chloromethyl Ketones ; pharmacology ; Animals ; Lipopolysaccharides ; toxicity ; Macrophages, Alveolar ; drug effects ; Male ; Mice ; Mice, Inbred C57BL ; Oligopeptides ; pharmacology ; Pyroptosis ; drug effects