1.Effects of acupuncture on the hypothalamic-pituitary-ovarian axis and FSH/cAMP signaling pathway in aged rats.
Yaoyao ZHU ; Yaqian YIN ; Huanfang XU ; Li YANG ; Weixin LI ; Chenchen SU ; Rong ZHANG ; Yigong FANG
Chinese Acupuncture & Moxibustion 2025;45(2):200-208
OBJECTIVE:
To explore the mechanism of acupuncture on improving ovarian hypofunction in aged rats from two perspectives: the overall regulation of the hypothalamic-pituitary-ovarian (HPO) axis and the local ovarian follicle stimulating hormone (FSH)/cyclic adenosine monophosphate (cAMP) signaling pathway.
METHODS:
Six 3-month-old female SPF-grade Sprague-Dawley (SD) rats were selected as the blank group. Another twelve 9-month-old female SD rats were randomly divided into a model group and an acupuncture group, with six rats in each. The acupuncture group received acupuncture at "Baihui" (GV20), "Guanyuan" (CV4), and bilateral "Ciliao" (BL32) for 20 min per session, once every other day, for a total of 10 sessions. Vaginal smear tests were performed daily to observe the estrous cycle of the rats. Ovarian morphology was observed using HE staining, and follicles at various stages were counted. ELISA was used to detect levels of serum FSH, luteinizing hormone (LH), estradiol (E2), anti-müllerian hormone (AMH), hypothalamic gonadotropin-releasing hormone (GnRH), pituitary FSH and LH, and ovarian cAMP. Immunohistochemistry and Western blot were used to detect the protein expression of ovarian cAMP protein kinase catalytic subunit, FSH receptor (FSHR), and P450. Real-time quantitative PCR was used to measure mRNA expression levels of FSHR and P450 in ovarian tissue.
RESULTS:
Compared with the blank group, the model group showed an increased rate of estrous cycle disorder (P<0.01), reduced granulosa cell layers with blurred boundaries and disordered arrangement, decreased numbers of developing follicles at all stages, and increased numbers of atretic follicles (P<0.01); the serum levels of FSH and LH were increased (P<0.01), while E2 and AMH levels were decreased (P<0.01); the hypothalamic GnRH and pituitary FSH and LH levels were elevated (P<0.01), and ovarian cAMP level was decreased (P<0.01); the positive expression and protein expression of ovarian P450, cAMP protein kinase catalytic subunit, and FSHR were reduced (P<0.01), and ovarian FSHR and P450 mRNA expression was decreased (P<0.01). Compared with the model group, the acupuncture group showed a reduced rate of estrous cycle disorder (P<0.01), clear granulosa cell margins, increased numbers of primordial and secondary follicles, and decreased numbers of atretic follicles (P<0.01); the serum FSH and LH levels were decreased (P<0.01, P<0.05), while E2 and AMH levels were increased (P<0.05, P<0.01); the hypothalamic GnRH and pituitary FSH and LH levels were decreased (P<0.01, P<0.05), and ovarian cAMP level was increased (P<0.01); the positive expression and protein expression of ovarian P450, cAMP protein kinase catalytic subunit, and FSHR were elevated (P<0.01), and ovarian FSHR and P450 mRNA expression was increased (P<0.01).
CONCLUSION
Acupuncture could delay ovarian hypofunction in aged rats, possibly through regulating the HPO axis and the FSH/cAMP signaling pathway.
Animals
;
Female
;
Rats
;
Rats, Sprague-Dawley
;
Follicle Stimulating Hormone/genetics*
;
Acupuncture Therapy
;
Ovary/metabolism*
;
Signal Transduction
;
Humans
;
Cyclic AMP/metabolism*
;
Hypothalamo-Hypophyseal System/metabolism*
;
Aging/metabolism*
;
Hypothalamus/metabolism*
;
Pituitary Gland/metabolism*
;
Gonadotropin-Releasing Hormone/metabolism*
2.Research progress on the role of mitochondrial complex I in the pathogenesis of Parkinson's disease.
Acta Physiologica Sinica 2025;77(1):167-180
Currently, the incidence of Parkinson's disease (PD) is on the rise. More and more evidences suggest that mitochondrial dysfunction plays a crucial role in the etiology of PD, and dysfunction of mitochondrial complex I (MCI) is one of the most critical factors leading to mitochondrial dysfunction. On one hand, MCI dysfunction stimulates dopaminergic neurons to produce reactive oxygen species (ROS). On the other hand, MCI dysfunction decreases dopaminergic neuron viability and reduces ATP production. All these outcomes promote the pathological progression of PD. This review summarizes research progress on the role of MCI in the pathogenesis of PD, as well as PD treatment strategies based on MCI.
Parkinson Disease/metabolism*
;
Humans
;
Electron Transport Complex I/metabolism*
;
Mitochondria/physiology*
;
Reactive Oxygen Species/metabolism*
;
Dopaminergic Neurons/metabolism*
;
Animals
;
Adenosine Triphosphate/metabolism*
3.NAD+ metabolism in cardiovascular diseases.
Zhao-Zhi WEN ; Yi-Hang YANG ; Dong LIU ; Chong-Xu SHI
Acta Physiologica Sinica 2025;77(2):345-360
Cardiovascular diseases (CVDs) are the leading cause of death worldwide. Nicotinamide adenine dinucleotide (NAD+) is a central and pleiotropic metabolite involved in multiple cellular energy metabolism, such as cell signaling, DNA repair, protein modifications, and so on. Evidence suggests that NAD+ levels decline with age, obesity, and hypertension, which are all significant CVD risk factors. In addition, the therapeutic elevation of NAD+ levels reduces chronic low-grade inflammation, reactivates autophagy and mitochondrial biogenesis, and enhances antioxidation and metabolism in vascular cells of humans with vascular disorders. In preclinical animal models, NAD+ boosting also extends the health span, prevents metabolic syndrome, and decreases blood pressure. Moreover, NAD+ storage by genetic, pharmacological, or natural dietary NAD+-increasing strategies has recently been shown to be effective in improving the pathophysiology of cardiac and vascular health in different animal models and humans. Here, we discuss NAD+-related mechanisms pivotal for vascular health and summarize recent research on NAD+ and its association with vascular health and disease, including hypertension, atherosclerosis, and coronary artery disease. This review also assesses various NAD+ precursors for their clinical efficacy and the efficiency of NAD+ elevation in the prevention or treatment of major CVDs, potentially guiding new therapeutic strategies.
Humans
;
Cardiovascular Diseases/physiopathology*
;
NAD/metabolism*
;
Animals
;
Hypertension/metabolism*
4.Effect of total secondary ginsenosides on apoptosis and energy metabolism of H9c2 cells under hypoxia based on mitochondrial biogenesis.
Zhong-Jie YUAN ; Yue XIAO ; Zhen LIU ; Ai-Qun ZHANG ; Bin LI ; Shang-Xian GAO
China Journal of Chinese Materia Medica 2025;50(5):1255-1266
This study explores the effect of total secondary ginsenosides(TSG) on apoptosis and energy metabolism in H9c2 cells under hypoxia and its potential mechanisms. H9c2 cell viability was observed and the apoptosis rate was calculated to determine suitable intervention concentrations of TSG, antimycin A complex(AMA), and coenzyme Q10(CoQ10), along with the duration of hypoxia. H9c2 cells at the logarithmic phase were divided into a normal group, a model group, a TSG group, an AMA group, a TSG+AMA group, and a CoQ10 group. All groups, except the normal group, were treated with their respective intervention drugs and cultured under hypoxic conditions. Adenosine triphosphate(ATP) content and creatine kinase(CK) activity were measured using an ATP chemiluminescence assay kit and a CK colorimetric assay kit. Flow cytometry was used to assess apoptosis rates, and Western blot evaluated the expression levels of apoptosis-related proteins, including B-cell lymphoma 2(Bcl-2), Bcl-2-associated X protein(Bax), cysteinyl aspartate-specific protease(caspase)-3, caspase-8, and caspase-9, as well as mitochondrial biogenesis-related proteins peroxisome proliferator-activated receptor-γ coactivator 1α(PGC-1α), estrogen-related receptor-α(ERRα), nuclear respiratory factor(NRF)-1, NRF-2, peroxisome proliferator activated receptor-α(PPARα), and Na~+-K~+-ATPase. RT-PCR was employed to analyze the mRNA expression of mitochondrial biogenesis factors, including PGC-1α, ERRα, NRF-1, NRF-2, PPARα, mitochondrial transcription factor A(TFAM), mitochondrial cytochrome C oxidase 1(COX1), and mitochondrial NADH dehydrogenase subunit 1(ND1), ND2. The selected intervention concentrations were 7.5 μg·mL~(-1) for TSG, 10 μmol·L~(-1) for AMA, and 1×10~(-4) mol·L~(-1) for CoQ10, with a hypoxia duration of 6 h. Compared with the normal group, the model group showed decreased ATP content and CK activity, increased apoptosis rates, decreased Bcl-2 expression, and increased Bax, caspase-3, caspase-8, and caspase-9 expression in H9c2 cells. Additionally, the protein and mRNA expression levels of mitochondrial biogenesis-related factors(PGC-1α, ERRα, NRF-1, NRF-2, PPARα), mRNA expression of TFAM, COX1, and ND1, ND2, and protein expression of Na~+-K~+-ATPase in mitochondrial DNA, were also reduced. In the TSG and CoQ10 groups, ATP content and CK activity increased, and apoptosis rates decreased compared with those in the model group. The TSG group showed decreased protein expression of apoptosis-related proteins Bax, caspase-3, caspase-8, and caspase-9, increased protein and mRNA expression of mitochondrial biogenesis factors PGC-1α, ERRα, NRF-1, and PPARα, and increased NRF-2 protein expression and TFAM mRNA expression in mitochondrial DNA. Conversely, in the AMA group, ATP content and CK activity decreased, the apoptosis rate increased, Bcl-2 expression decreased, and Bax, caspase-3, caspase-8, and caspase-9 expression increased, alongside reductions in PGC-1α, ERRα, NRF-1, NRF-2, PPARα protein and mRNA expression, as well as TFAM, COX1, ND1, ND2 mRNA expression and Na~+-K~+-ATPase protein expression. Compared with the TSG group, the TSG+AMA group exhibited decreased ATP content and CK activity, increased apoptosis rates, decreased Bcl-2 expression, and increased Bax, caspase-3, caspase-8, and caspase-9 expression, along with decreased PGC-1α, ERRα, NRF-1, NRF-2, and PPARα protein and mRNA expression and TFAM, COX1, and ND1, ND2 mRNA expression. Compared with the AMA group, the TSG+AMA group showed increased CK activity, decreased apoptosis rate, increased Bcl-2 expression, and decreased Bax, caspase-8, and caspase-9 expression. Additionally, the protein and mRNA expression of PGC-1α, ERRα, NRF-1, PPARα, mRNA expression of TFAM, COX1, ND1, ND2, and Na~+-K~+-ATPase protein expression increased. In conclusion, TSG enhance ATP content and CK activity and inhibit apoptosis in H9c2 cells under hypoxia, and the mechanisms may be related to the regulation of PGC-1α, ERRα, NRF-1, NRF-2, PPARα, and TFAM expression, thus promoting mitochondrial biogenesis.
Apoptosis/drug effects*
;
Ginsenosides/pharmacology*
;
Energy Metabolism/drug effects*
;
Mitochondria/metabolism*
;
Animals
;
Rats
;
Cell Line
;
Cell Hypoxia/drug effects*
;
Organelle Biogenesis
;
Adenosine Triphosphate/metabolism*
;
Humans
;
Cell Survival/drug effects*
5.Medicinal properties and mechanisms of p-cymene with mild and warm nature based on deficiency-cold and deficiency-heat syndrome models.
Xiao-Fang WU ; Yi LI ; Xing-Yu ZHAO ; Lin-Ze LI ; Qi ZHANG ; Yin-Ming ZHAO ; Ying-Li ZHU ; Chun WANG ; Jian-Jun ZHANG ; Lin-Yuan WANG
China Journal of Chinese Materia Medica 2025;50(8):2032-2040
This paper aims to study the effect of p-cymene on mice with deficiency-cold syndrome induced by hydrocortisone and deficiency-heat syndrome induced by dexamethasone and explore the medicinal properties and mechanism of p-cymene with mild and warm nature based on the dominant characteristics of the two-way applicable conditions of mild drugs. A total of 80 KM mice were randomly divided into blank group, deficiency-cold syndrome model group, deficiency-cold syndrome + ginseng group, and deficiency-cold syndrome + low-dose and high-dose p-cymene groups, as well as blank group, deficiency-heat syndrome model group, deficiency-heat syndrome + American ginseng group, and deficiency-heat syndrome + low-dose and high-dose p-cymene groups. Hydrocortisone and dexamethasone solution were intragastrically administered for 14 consecutive days to prepare deficiency-cold syndrome and deficiency-heat syndrome models. Except for the blank group and the model group intragastrically administered with normal saline, the other groups were intragastrically administrated with drugs for 14 days. The levels of cyclic adenosine monophosphate(cAMP), cyclic guanosine monophosphate(cGMP), triiodothyronine(T3), thyroxine(T4), total cholesterol(TC), triglyceride(TG), immunoglobin G(IgG), and immunoglobin M(IgM) in serum, as well as the activity of Na~+-K~+-ATPase in liver tissue were detected. The expression of transient receptor potential melastatin 8(TRPM8), transient receptor potential vanilloid 1(TRPV1), and uncoupling protein 1(UCP1) in brown adipose tissue of deficiency-cold syndrome model after intervention with p-cymene was studied. The results showed that p-cymene could effectively improve the levels of cAMP, cAMP/cGMP, TC, IgM, and IgG in serum and the activity of Na~+-K~+-ATPase in liver tissue of mice with deficiency-cold syndrome and reduce the content of cGMP. The effects on T3, T4, and TG were not statistically significant. At the same time, p-cymene could reduce the levels of cAMP, cAMP/cGMP, and T4 in serum and the activity of Na~+-K~+-ATPase in liver tissue of mice with deficiency-cold syndrome and increase the levels of cGMP, IgM, and IgG, and it had no effect on T3, TC, and TG. In addition, p-cymene could up-regulate the expression of TRPV1 and UCP1 in brown fat of mice with deficiency-cold syndrome and down-regulate the expression of TRPM8. In summary, p-cymene could significantly regulate the syndrome indexes of mice with deficiency-cold syndrome, and some indexes of mice with deficiency-heat syndrome could be improved, but the effects on lipid metabolism and energy metabolism indexes were not obvious, indicating that the regulation effect of p-cymene on deficiency-cold syndrome model was more prominent and that the medicinal properties of p-cymene were mild and warm. The regulation of TRPV1/TRPM8/UCP1 channel expression may be the molecular biological mechanism of p-cymene with mild and warm nature affecting the energy metabolism of the body.
Animals
;
Cymenes
;
Mice
;
Drugs, Chinese Herbal/administration & dosage*
;
Male
;
Disease Models, Animal
;
Humans
;
Cyclic AMP/metabolism*
;
Monoterpenes/administration & dosage*
;
Liver/metabolism*
;
Cyclic GMP/metabolism*
;
TRPV Cation Channels/genetics*
;
Uncoupling Protein 1/genetics*
6.Effect and mechanism of Liujunzi Pills on gut microbiota of rats with spleen Qi deficiency syndrome.
Tao ZHANG ; Nian CHEN ; Qin-Yao JIA ; Xiao-Xia LEI ; Jie WANG ; Jia-Qing ZHAO ; Ying WEI ; Jing WEN
China Journal of Chinese Materia Medica 2025;50(15):4333-4341
This article aims to explore the effect and mechanism of Liujunzi Pills on the intestinal microbiota of rats with spleen Qi deficiency syndrome. The raw Rhei Radix et Rhizoma water extract(1 g·mL~(-1)) was used to prepare spleen Qi deficiency rat models. A total of 44 SD male rats were randomly divided into a control group, a model group, Liujunzi Pills groups at high(3.24 g·kg~(-1)), medium(1.62 g·kg~(-1)), low(0.81 g·kg~(-1)) doses, and Shenling Baizhu San(2.50 g·kg~(-1)) group. The drug effect was evaluated by observing the following aspects: spleen index, fecal water content, body weight, and intestinal propulsion index. Gut microbiota analysis and 16S rRNA gene sequencing were conducted on feces. Enzyme-linked immunosorbent assay(ELISA) and UV spectrophotometry were used to detect interleukin-1β(IL-1β) and adenosine triphosphate(ATP) levels in small intestine tissues. Hematoxylin-eosin staining and transmission electron microscopy were employed to observe changes in intestinal pathology and microstructure. The results show that, compared with the control group, fecal moisture content is significantly increased while spleen index, body weight, and intestinal propulsion index are significantly reduced in rats of the model group, indicating the successful establishment of the model. The above symptoms can be improved by both Shenling Baizhu San and Liujunzi Pills. Compared with the control group, in the model group, the gut microbiota abundance is changed with an unbalanced development: the abundance of beneficial bacteria within the Bacteroidetes phylum is reduced, accompanied by a significantly decreased Shannon index, and reduced signal levels of nicotinamide adenine dinucleotide phosphate(NADPH)-related enzymes relevant to mitochondria. However, Liujunzi Pills and Shenling Baizhu San can significantly improve the Bacteroidetes phylum abundance in gut microbiota, microbial diversity, and NADPH activity in the model group. Additionally, compared with the control group, the ATP level is decreased and the IL-1β level is increased in small intestinal tissues of the model group, with shorter small intestinal epithelial villi and decreased mitochondrial number. The above symptoms can be improved by Liujunzi Pills and Shenling Baizhu San. In conclusion, Liujunzi Pills can treat spleen Qi deficiency syndrome by enhancing mitochondrial function to regulate gut microbiota balance and diversity.
Animals
;
Gastrointestinal Microbiome/drug effects*
;
Drugs, Chinese Herbal/pharmacology*
;
Male
;
Rats, Sprague-Dawley
;
Rats
;
Qi
;
Spleen/metabolism*
;
Splenic Diseases/metabolism*
;
Humans
;
Interleukin-1beta/genetics*
;
Bacteria/drug effects*
;
Feces/microbiology*
;
Adenosine Triphosphate/metabolism*
7.Mechanism analysis of ω-3 polyunsaturated fatty acids in alleviating oxidative stress and promoting osteogenic differentiation of MC3T3-E1 cells through activating Nrf2/NQO1 pathway.
Jiahui HUANG ; Long CHEN ; Chen XU ; Haojie YU ; Shishuai ZHOU ; Jianzhong GUAN
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(11):1459-1467
OBJECTIVE:
To explore the mechanism by which ω-3 polyunsaturated fatty acids (hereinafter referred to as "ω-3") exert antioxidant stress protection and promote osteogenic differentiation in MC3T3-E1 cells, and to reveal the relationship between ω-3 and the key antioxidant stress pathway involving nuclear factor E2-related factor 2 (Nrf2) and NAD (P) H quinone oxidoreductase 1 (NQO1) in MC3T3-E1 cells.
METHODS:
The optimal concentration of H 2O 2 (used to establish the oxidative stress model of MC3T3-E1 cells in vitro) and the optimal intervention concentrations of ω-3 were screened by cell counting kit 8. MC3T3-E1 cells were divided into blank control group, oxidative stress group (H 2O 2), low-dose ω-3 group (H 2O 2+low-dose ω-3), and high-dose ω-3 group (H 2O 2+high-dose ω-3). After osteoblastic differentiation for 7 or 14 days, the intracellular reactive oxygen species (ROS) level was measured by fluorescence staining and flow cytometry, and the mitochondrial morphological changes were observed by biological transmission electron microscope; the expression levels of Nrf2, NQO1, heme oxygenase 1 (HO-1), Mitofusin 1 (Mfn1), and Mfn2 were detected by Western blot to evaluate the cells' antioxidant stress capacity; the expression levels of Runt-related transcription factor 2 (RUNX2) and osteocalcin (OCN) were detected by immunofluorescence staining and Western blot; osteogenic potential of MC3T3-E1 cells was evaluated by alkaline phosphatase (ALP) staining and alizarin red staining.
RESULTS:
Compared with the oxidative stress group, the content of ROS in the low and high dose ω-3 groups significantly decreased, and the protein expressions of Nrf2, NQO1, and HO-1 significantly increased ( P<0.05). At the same time, the mitochondrial morphology of MC3T3-E1 cells improved, and the expressions of mitochondrial morphology-related proteins Mfn1 and Mfn2 significantly increased ( P<0.05). ALP staining and alizarin red staining showed that the low-dose and high-dose ω-3 groups showed stronger osteogenic ability, and the expressions of osteogenesis-related proteins RUNX2 and OCN significantly increased ( P<0.05). And the above results showed a dose-dependence in the two ω-3 treatment groups ( P<0.05).
CONCLUSION
ω-3 can enhance the antioxidant capacity of MC3T3-E1 cells under oxidative stress conditions and upregulate their osteogenic activity, possibly through the Nrf2/NQO1 signaling pathway.
Oxidative Stress/drug effects*
;
NF-E2-Related Factor 2/metabolism*
;
NAD(P)H Dehydrogenase (Quinone)/metabolism*
;
Animals
;
Mice
;
Osteogenesis/drug effects*
;
Cell Differentiation/drug effects*
;
Fatty Acids, Omega-3/pharmacology*
;
Signal Transduction/drug effects*
;
Osteoblasts/drug effects*
;
Reactive Oxygen Species/metabolism*
;
Cell Line
;
Hydrogen Peroxide/pharmacology*
;
Core Binding Factor Alpha 1 Subunit/metabolism*
;
Antioxidants/pharmacology*
;
Heme Oxygenase-1/metabolism*
8.Effects and mechanisms of hpcMSC transplantation in ameliorating cognitive dysfunction, neuroinflammation, and hippocampal neuronal damage in stroke mice.
Guangping HAO ; Shanyou SONG ; Mengjun LI
Chinese Journal of Cellular and Molecular Immunology 2025;41(6):514-523
Objective To investigate the effects and underlying mechanisms of human placental chorionic plate-derived mesenchymal stem cells (hpcMSCs) on cognitive dysfunction, neuroinflammation, neuronal damage and synaptic plasticity in a mouse model of stroke. Methods A mouse model of middle cerebral artery occlusion (MCAO) was adopted. The mice were randomly divided into three groups: sham operation group, MCAO group and hpcMSCs treatment group, with seven mice in each group. The hpcMSCs treatment group received hpcMSCs transplantation on the 1st, 3rd and 10th day after MCAO. One month after MCAO, the cognitive ability of the mice was evaluated by Morris water maze and Y maze behavioral tests; the morphological changes and synaptic functions of hippocampal neurons were analyzed by HE staining, Nissl staining, Golgi staining and immunofluorescence staining techniques; the density and activation status of microglia was analyzed by Fluorescent labeling method; the levels of tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β) and IL-6 in brain tissue were analyzed by ELISA; the expressions of phosphorylated-mitogen-activated protein kinase kinase 1 (p-MEK1), phosphorylated-extracellular regulated protein kinase (p-ERK) and phosphorylated-cAMP-response element binding protein (p-CREB) and other proteins related to neuroprotection in the signal pathways were detected by Western blotting; and electrophysiological detection was performed using hippocampal slices in vitro. Results Compared with the MCAO group, mice in the hpcMSCs treatment group showed significant improvements, including improved cognitive ability, alleviated neuroinflammation (demonstrated by reduced microglial activation and decreased levels of inflammatory factors TNF-α, IL-1β and IL-6), and increased neuronal density with normalized morphology of neurons in the hippocampal CA1 region. The treatment group also demonstrated a significantly increased number of Nissl-positive cells and density of dendritic spines of hippocampal neurons, along with restored frequency of miniature excitatory postsynaptic potential (mEPSP). Moreover, hpcMSCs treatment significantly increased the expression levels of p-MEK1, p-ERK and p-CREB in the hippocampus. Conclusion Transplantation of hpcMSCs ameliorates cognitive dysfunction and hippocampal neuronal injury in stroke mice through the reduction of neuroinflammation, restoration of hippocampal neuronal function, promotion of synaptic plasticity and activation of the MEK/ERK/CREB signaling pathway. These findings suggest a new potential therapeutic approach for post-stroke neural repair.
Animals
;
Hippocampus/physiopathology*
;
Mice
;
Cognitive Dysfunction/etiology*
;
Mesenchymal Stem Cell Transplantation
;
Male
;
Neurons/metabolism*
;
Stroke/metabolism*
;
Humans
;
Neuroinflammatory Diseases/therapy*
;
Female
;
Cyclic AMP Response Element-Binding Protein/metabolism*
;
Disease Models, Animal
;
Mesenchymal Stem Cells/cytology*
;
Mice, Inbred C57BL
9.Triclocarban impacts human sperm motility by inhibiting glycolysis and oxidative phosphorylation.
Long-Long FU ; Wei-Zhou WANG ; Yan FENG ; Fu CHEN ; Bin LIU ; Liang HUANG ; Lin-Yuan ZHANG ; Lei CHEN
Asian Journal of Andrology 2025;27(6):707-713
Triclocarban (TCC) is a broad-spectrum antimicrobial widely used in various personal care products, textiles, and children's toys. TCC has potential reproductive and developmental toxicity in animals. However, little is known regarding the effect of TCC on human sperm function. In this study, an in vitro assay was used to investigate the effects of TCC on normal human spermatozoa and the possible underlying mechanisms involved. Semen from healthy male donors was collected and cultured in complete Biggers, Whitten and Whittingham (BWW) and low-sugar BWW media, followed by treatment with TCC at concentrations of 0, 0.1 µmol l -1 , 1 µmol l -1 , 10 µmol l -1 , and 100 µmol l -1 for 4 h. TCC was found to reduce the sperm total motility and progressive motility. Moreover, the sperm kinematic parameters, straight-line velocity (VSL), average path velocity (VAP), and curvilinear velocity (VCL) were affected in a dose-dependent manner. After treatment with TCC at the lowest effective concentration of 10 µmol l -1 , TCC caused a significant decrease in mitochondrial adenosine triphosphate (ATP) production and mitochondrial membrane potential (MMP) and a significant increase in reactive oxygen species (ROS), similar to the observations with the positive control carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP), suggesting that TCC may decrease sperm motility by affecting the oxidative phosphorylation (OXPHOS) pathway. In a sugar-free and low-sugar BWW culture environment, TCC enhanced the damaging effect on sperm motility and ATP, MMP, and lactate decreased significantly, suggesting that TCC may also affect the glycolytic pathway that supplies energy to spermatozoa. This study demonstrates a possible mechanism of TCC toxicity in spermatozoa involving both the OXPHOS and glycolysis pathways.
Male
;
Sperm Motility/drug effects*
;
Humans
;
Carbanilides/pharmacology*
;
Oxidative Phosphorylation/drug effects*
;
Glycolysis/drug effects*
;
Membrane Potential, Mitochondrial/drug effects*
;
Adenosine Triphosphate/metabolism*
;
Spermatozoa/metabolism*
;
Reactive Oxygen Species/metabolism*
;
Mitochondria/metabolism*
10.Stir-fried Semen Armeniacae Amarum Suppresses Aristolochic Acid I-Induced Nephrotoxicity and DNA Adducts.
Cheng-Xian LI ; Xiao-He XIAO ; Xin-Yu LI ; Da-Ke XIAO ; Yin-Kang WANG ; Xian-Ling WANG ; Ping ZHANG ; Yu-Rong LI ; Ming NIU ; Zhao-Fang BAI
Chinese journal of integrative medicine 2025;31(2):142-152
OBJECTIVE:
To investigate the protective effects of stir-fried Semen Armeniacae Amarum (SAA) against aristolochic acid I (AAI)-induced nephrotoxicity and DNA adducts and elucidate the underlying mechanism involved for ensuring the safe use of Asari Radix et Rhizoma.
METHODS:
In vitro, HEK293T cells overexpressing Flag-tagged multidrug resistance-associated protein 3 (MRP3) were constructed by Lentiviral transduction, and inhibitory effect of top 10 common pairs of medicinal herbs with Asari Radix et Rhizoma in clinic on MRP3 activity was verified using a self-constructed fluorescence screening system. The mRNA, protein expressions, and enzyme activity levels of NAD(P)H quinone dehydrogenase 1 (NQO1) and cytochrome P450 1A2 (CYP1A2) were measured in differentiated HepaRG cells. Hepatocyte toxicity after inhibition of AAI metabolite transport was detected using cell counting kit-8 assay. In vivo, C57BL/6 mice were randomly divided into 5 groups according to a random number table, including: control (1% sodium bicarbonate), AAI (10 mg/kg), stir-fried SAA (1.75 g/kg) and AAI + stir-fried SAA (1.75 and 8.75 g/kg) groups, 6 mice in each group. After 7 days of continuous gavage administration, liver and kidney damages were assessed, and the protein expressions and enzyme activity of liver metabolic enzymes NQO1 and CYP1A2 were determined simultaneously.
RESULTS:
In vivo, combination of 1.75 g/kg SAA and 10 mg/kg AAI suppressed AAI-induced nephrotoxicity and reduced dA-ALI formation by 26.7%, and these detoxification effects in a dose-dependent manner (P<0.01). Mechanistically, SAA inhibited MRP3 transport in vitro, downregulated NQO1 expression in vivo, increased CYP1A2 expression and enzymatic activity in vitro and in vivo, respectively (P<0.05 or P<0.01). Notably, SAA also reduced AAI-induced hepatotoxicity throughout the detoxification process, as indicated by a 41.3% reduction in the number of liver adducts (P<0.01).
CONCLUSIONS
Stir-fried SAA is a novel drug candidate for the suppression of AAI-induced liver and kidney damages. The protective mechanism may be closely related to the regulation of transporters and metabolic enzymes.
Aristolochic Acids/toxicity*
;
Animals
;
Humans
;
NAD(P)H Dehydrogenase (Quinone)/genetics*
;
HEK293 Cells
;
Kidney/pathology*
;
Cytochrome P-450 CYP1A2/genetics*
;
Mice, Inbred C57BL
;
DNA Adducts/drug effects*
;
Male
;
Kidney Diseases/drug therapy*
;
Drugs, Chinese Herbal/therapeutic use*
;
Mice
;
Prunus armeniaca
;
Plant Extracts

Result Analysis
Print
Save
E-mail