1.Newly Emerging Human Coronaviruses:Animal Models and Vaccine Research for SARS, MERS, and COVID-19
Immune Network 2020;20(4):e28-
The recent emergence of the novel coronavirus (CoV) or severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) poses a global threat to human health and economy. As of June 26, 2020, over 9.4 million cases of infection, including 482,730 deaths, had been confirmed across 216 countries. To combat a devastating virus pandemic, numerous studies on vaccine development are urgently being accelerated. In this review article, we take a brief look at the characteristics of SARS-CoV-2 in comparison to SARS and Middle East respiratory syndrome (MERS)-CoVs and discuss recent approaches to coronavirus disease-2019 (COVID-19) vaccine development.
2.Pre-existing Immunity to Endemic Human Coronaviruses Does Not Affect the Immune Response to SARS-CoV-2 Spike in a Murine Vaccination Model
Ahn Young JEONG ; Pureum LEE ; Moo-Seung LEE ; Doo-Jin KIM
Immune Network 2023;23(2):e19-
Endemic human coronaviruses (HCoVs) have been evidenced to be cross-reactive to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Although a correlation exists between the immunological memory to HCoVs and coronavirus disease 2019 (COVID-19) severity, there is little experimental evidence for the effects of HCoV memory on the efficacy of COVID-19 vaccines. Here, we investigated the Ag-specific immune response to COVID-19 vaccines in the presence or absence of immunological memory against HCoV spike Ags in a mouse model.Pre-existing immunity against HCoV did not affect the COVID-19 vaccine-mediated humoral response with regard to Ag-specific total IgG and neutralizing Ab levels. The specific T cell response to the COVID-19 vaccine Ag was also unaltered, regardless of pre-exposure to HCoV spike Ags. Taken together, our data suggest that COVID-19 vaccines elicit comparable immunity regardless of immunological memory to spike of endemic HCoVs in a mouse model.
3.Current Status of COVID-19 Vaccine Development: Focusing on Antigen Design and Clinical Trials on Later Stages
Pureum LEE ; Chang-Ung KIM ; Sang Hawn SEO ; Doo-Jin KIM
Immune Network 2021;21(1):e4-
The global outbreak of coronavirus disease 2019 (COVID-19) is still threatening human health, economy, and social life worldwide. As a counteraction for this devastating disease, a number of vaccines are being developed with unprecedented speed combined with new technologies. As COVID-19 vaccines are being developed in the absence of a licensed human coronavirus vaccine, there remain further questions regarding the long-term efficacy and safety of the vaccines, as well as immunological mechanisms in depth. This review article discusses the current status of COVID-19 vaccine development, mainly focusing on antigen design, clinical trials in later stages, and immunological considerations for further study.
4.Baseline Serum Interleukin-6 Levels Predict the Response of Patients with Advanced Non-small Cell Lung Cancer to PD-1/PD-L1 Inhibitors
Da Hyun KANG ; Cheol-Kyu PARK ; Chaeuk CHUNG ; In-Jae OH ; Young-Chul KIM ; Dongil PARK ; Jinhyun KIM ; Gye Cheol KWON ; Insun KWON ; Pureum SUN ; Eui-Cheol SHIN ; Jeong Eun LEE
Immune Network 2020;20(3):e27-
Although various studies on predictive markers in the use of PD-1/PD-L1 inhibitors are in progress, only PD-L1 expression levels in tumor tissues are currently used. In the present study, we investigated whether baseline serum levels of IL-6 can predict the treatment response of patients with advanced non-small cell lung cancer (NSCLC) treated with PD-1/PD-L1 inhibitors. In our cohort of 125 NSCLC patients, the objective response rate (ORR) and disease control rate (DCR) were significantly higher in those with low IL-6 (<13.1 pg/ml) than those with high IL-6 (ORR 33.9% vs. 11.1%, p=0.003; DCR 80.6% vs. 34.9%, p<0.001). The median progression-free survival was 6.3 months (95% confidence interval [CI], 3.9–8.7) in the low IL-6 group, significantly longer than in the high IL-6 group (1.9 months, 95% CI, 1.6–2.2, p<0.001). The median overall survival in the low IL-6 group was significantly longer than in the high IL-6 group (not reached vs. 7.4 months, 95% CI, 4.8–10.0). Thus, baseline serum IL-6 levels could be a potential biomarker for predicting the efficacy and survival benefit of PD-1/PD-L1 inhibitors in NSCLC.
5.A 4-Axis Technique for Three-Dimensional Printing of an Artificial Trachea.
Hae Sang PARK ; Hyun Jung PARK ; Junhee LEE ; Pureum KIM ; Ji Seung LEE ; Young Jin LEE ; Ye Been SEO ; Do Yeon KIM ; Olatunji AJITERU ; Ok Joo LEE ; Chan Hum PARK
Tissue Engineering and Regenerative Medicine 2018;15(4):415-425
BACKGROUND: Several types of three-dimensional (3D)-printed tracheal scaffolds have been reported. Nonetheless, most of these studies concentrated only on application of the final product to an in vivo animal study and could not show the effects of various 3D printing methods, materials, or parameters for creation of an optimal 3D-printed tracheal scaffold. The purpose of this study was to characterize polycaprolactone (PCL) tracheal scaffolds 3D-printed by the 4-axis fused deposition modeling (FDM) method and determine the differences in the scaffold depending on the additive manufacturing method. METHODS: The standard 3D trachea model for FDM was applied to a 4-axis FDM scaffold and conventional FDM scaffold. The scaffold morphology, mechanical properties, porosity, and cytotoxicity were evaluated. Scaffolds were implanted into a 7 × 10-mm artificial tracheal defect in rabbits. Four and 8 weeks after the operation, the reconstructed sites were evaluated by bronchoscopic, radiological, and histological analyses. RESULTS: The 4-axis FDM provided greater dimensional accuracy and was significantly closer to CAD software-based designs with a predefined pore size and pore interconnectivity as compared to the conventional scaffold. The 4-axis tracheal scaffold showed superior mechanical properties. CONCLUSION: We suggest that the 4-axis FDM process is more suitable for the development of an accurate and mechanically superior trachea scaffold.
Animals
;
Methods
;
Porosity
;
Printing, Three-Dimensional*
;
Rabbits
;
Trachea*