1.Association between chronic lung diseases and the risk of lung cancer in UK Biobank: observational and Mendelian randomization analyses.
Jing ZHANG ; Zhi Min MA ; Hui WANG ; Ya Ting FU ; Chen JI ; Meng ZHU ; Hong Bing SHEN ; Hong Xia MA
Chinese Journal of Preventive Medicine 2023;57(8):1147-1152
Objective: To investigate the association between chronic lung diseases and the risk of lung cancer. Methods: Using UK Biobank (UKB) survey data, 472 397 participants who had not previously been diagnosed with cancer and whose self-reported sex was consistent with their genetic sex were studied. Information on the prevalence of previous chronic lung diseases, general demographic characteristics and the prevalence of lung cancer was collected using baseline questionnaires and national health system data. The multivariate Cox proportional risk regression model was used to analyze the association between four previous chronic lung diseases (asthma, chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis and interstitial pulmonary disease) and the risk of lung cancer. A total of 458 526 participants with genotype data in the observational study were selected as research objects, and the closely related and independent genetic loci with four chronic lung diseases were selected as instrumental variables, and the association between four chronic lung diseases and the risk of lung cancer was analyzed by Mendelian randomization (MR). The dose-response relationship between genetic risk score and the risk of lung cancer in different chronic lung diseases was evaluated using a restricted cubic spline function. Results: The age [M (Q1, Q3)] of the subjects was 57 (50, 63) years old, and there were 3 516 new cases of lung cancer (0.74%) during follow-up. The multivariate Cox proportional hazard regression model analysis showed that previous chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis were associated with the risk of lung cancer, about 1.61 (1.49-1.75) and 2.61 (1.24-5.49), respectively. MR Studies showed that genetically predicted chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis were associated with the risk of lung cancer, with HR (95%CI) of 1.10 (1.03-1.19) and 1.04 (1.01-1.08), respectively. The results of restricted cubic spline function analysis showed that the risk of lung cancer increased linearly with the increase of genetic risk scores for chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis (P<0.05). Neither observational studies nor Mendelian randomization analysis found an association between previous asthma or interstitial lung disease and the risk of lung cancer (both P values>0.05). Conclusion: Chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis are potential risk factors for lung cancer.
Humans
;
Middle Aged
;
Mendelian Randomization Analysis
;
Biological Specimen Banks
;
Lung Neoplasms/genetics*
;
Pulmonary Disease, Chronic Obstructive/genetics*
;
Asthma/genetics*
;
Idiopathic Pulmonary Fibrosis/genetics*
;
United Kingdom/epidemiology*
;
Genome-Wide Association Study
2.Sinomenine ameliorates bleomycin A5-induced pulmonary fibrosis by blocking the miR-21/ADAMTS-1 signaling pathway in rats.
Lijing LIU ; Hong QIAN ; Qingxin MENG ; Xiang ZHANG ; Yingmin WEI ; Jianbin HE
Chinese Journal of Cellular and Molecular Immunology 2023;39(8):721-728
Objective To explore the impact of sinomenine on bleomycin A5-induced pulmonary fibrosis (PF) in rats and the underlying mechanism. Methods MRC-5 cells were cultured and treated with sinomenine to determine its optimal concentration and time through the MTT assay. Subsequently, MRC-5 cells were incubated with 80 μmol/L sinomenine for 48 hours or transfected with miR-21 mimic/a disintegrin-like and metalloproteinase with thrombospondin type 1 motif (ADAMTS-1) siRNA prior to sinomenine treatment. The expression of miR-21, ADAMTS-1, collagen type 1 (Col1) and collagen type 3 (Col3) was detected by quantitative real-time PCR (qRT-PCR) and/or Western blot analysis. Thirty SD rats were randomly divided into control group, sinomenine group and sinomenine combined with miR-21 agomir group, with 10 animals in each group. Bleomycin A5 were intratracheally administered to establish the PF model. Then, rats in control group, sinomenine group and sinomenine +miR-21 agomir group were treated with 9 g/L sodium chloride solution, sinomenine and sinomenine+miR-21 agomir, respectively. On day 28, all rats were sacrificed. HE and Masson staining was performed in pulmonary tissue. The expression of ADAMTS-1, Col1 and Col3 in pulmonary tissue were detected by qRT-PCR and/or Western blot analysis. ELISA was used to measure serum procollagen type 1 carboxyterminal propeptide (P1CP) and procollagen type 3 aminoterminal propeptide (P3NP) levels. Results Administration of sinomenine decreased miR-21 levels, up-regulated ADAMTS-1 expression, and promoted Col1 and Col3 degradation in MRC-5 cells. Importantly, interfering with the miR-21/ADAMTS-1 signaling pathway partially reversed the promotive effect of sinomenine on Col1 and Col3 degradation. Treatment of SD rats with sinomenine reduced alveolitis and PF scores, decreased serum P1CP and P3NP levels, up-regulated pulmonary ADAMTS-1 expression, and down-regulated Col1 and Col3 expression. However, these effects were reversed by miR-21 agomir. Conclusion Sinomenine promotes Col1 and Col3 degradation and inhibits PF in rats by miR-21/ADAMTS-1 pathway.
Rats
;
Animals
;
Pulmonary Fibrosis/genetics*
;
Procollagen/metabolism*
;
Rats, Sprague-Dawley
;
Signal Transduction
;
Bleomycin/adverse effects*
;
Collagen Type III/metabolism*
;
MicroRNAs/metabolism*
3.Identification of SULF1 as a Shared Gene in Idiopathic Pulmonary Fibrosis and Lung Adenocarcinoma.
Junyi WANG ; Lu LU ; Xiang HE ; Lijuan MA ; Tao CHEN ; Guoping LI ; Haijie YU
Chinese Journal of Lung Cancer 2023;26(9):669-683
BACKGROUND:
Idiopathic pulmonary fibrosis (IPF) is an idiopathic chronic, progressive interstitial lung disease with a diagnosed median survival of 3-5 years. IPF is associated with an increased risk of lung cancer. Therefore, exploring the shared pathogenic genes and molecular pathways between IPF and lung adenocarcinoma (LUAD) holds significant importance for the development of novel therapeutic approaches and personalized precision treatment strategies for IPF combined with lung cancer.
METHODS:
Bioinformatics analysis was conducted using publicly available gene expression datasets of IPF and LUAD from the Gene Expression Omnibus (GEO) database. Weighted gene co-expression network analysis was employed to identify common genes involved in the progression of both diseases, followed by functional enrichment analysis. Subsequently, additional datasets were used to pinpoint the core shared genes between the two diseases. The relationship between core shared genes and prognosis, as well as their expression patterns, clinical relevance, genetic characteristics, and immune-related functions in LUAD, were analyzed using The Cancer Genome Atlas (TCGA) database and single-cell RNA sequencing datasets. Finally, potential therapeutic drugs related to the identified genes were screened through drug databases.
RESULTS:
A total of 529 shared genes between IPF and LUAD were identified. Among them, SULF1 emerged as a core shared gene associated with poor prognosis. It exhibited significantly elevated expression levels in LUAD tissues, concomitant with high mutation rates, genomic heterogeneity, and an immunosuppressive microenvironment. Subsequent single-cell RNA-seq analysis revealed that the high expression of SULF1 primarily originated from tumor-associated fibroblasts. This study further demonstrated an association between SULF1 expression and tumor drug sensitivity, and it identified potential small-molecule drugs targeting SULF1 highly expressed fibroblasts.
CONCLUSIONS
This study identified a set of shared molecular pathways and core genes between IPF and LUAD. Notably, SULF1 may serve as a potential immune-related biomarker and therapeutic target for both diseases.
Humans
;
Lung Neoplasms/genetics*
;
Adenocarcinoma of Lung/genetics*
;
Idiopathic Pulmonary Fibrosis/genetics*
;
Adenocarcinoma
;
Cancer-Associated Fibroblasts
;
Prognosis
;
Tumor Microenvironment
;
Sulfotransferases
4.Association between chronic lung diseases and the risk of lung cancer in UK Biobank: observational and Mendelian randomization analyses.
Jing ZHANG ; Zhi Min MA ; Hui WANG ; Ya Ting FU ; Chen JI ; Meng ZHU ; Hong Bing SHEN ; Hong Xia MA
Chinese Journal of Preventive Medicine 2023;57(8):1147-1152
Objective: To investigate the association between chronic lung diseases and the risk of lung cancer. Methods: Using UK Biobank (UKB) survey data, 472 397 participants who had not previously been diagnosed with cancer and whose self-reported sex was consistent with their genetic sex were studied. Information on the prevalence of previous chronic lung diseases, general demographic characteristics and the prevalence of lung cancer was collected using baseline questionnaires and national health system data. The multivariate Cox proportional risk regression model was used to analyze the association between four previous chronic lung diseases (asthma, chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis and interstitial pulmonary disease) and the risk of lung cancer. A total of 458 526 participants with genotype data in the observational study were selected as research objects, and the closely related and independent genetic loci with four chronic lung diseases were selected as instrumental variables, and the association between four chronic lung diseases and the risk of lung cancer was analyzed by Mendelian randomization (MR). The dose-response relationship between genetic risk score and the risk of lung cancer in different chronic lung diseases was evaluated using a restricted cubic spline function. Results: The age [M (Q1, Q3)] of the subjects was 57 (50, 63) years old, and there were 3 516 new cases of lung cancer (0.74%) during follow-up. The multivariate Cox proportional hazard regression model analysis showed that previous chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis were associated with the risk of lung cancer, about 1.61 (1.49-1.75) and 2.61 (1.24-5.49), respectively. MR Studies showed that genetically predicted chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis were associated with the risk of lung cancer, with HR (95%CI) of 1.10 (1.03-1.19) and 1.04 (1.01-1.08), respectively. The results of restricted cubic spline function analysis showed that the risk of lung cancer increased linearly with the increase of genetic risk scores for chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis (P<0.05). Neither observational studies nor Mendelian randomization analysis found an association between previous asthma or interstitial lung disease and the risk of lung cancer (both P values>0.05). Conclusion: Chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis are potential risk factors for lung cancer.
Humans
;
Middle Aged
;
Mendelian Randomization Analysis
;
Biological Specimen Banks
;
Lung Neoplasms/genetics*
;
Pulmonary Disease, Chronic Obstructive/genetics*
;
Asthma/genetics*
;
Idiopathic Pulmonary Fibrosis/genetics*
;
United Kingdom/epidemiology*
;
Genome-Wide Association Study
6.Research Progress on Pathogenic Mechanism and Potential Therapeutic Drugs of Idiopathic Pulmonary Fibrosis Complicated with Non-small Cell Lung Cancer.
Ting XIAO ; Jiali BAO ; Xiangning LIU ; Hui HUANG ; Honggang ZHOU
Chinese Journal of Lung Cancer 2022;25(10):756-763
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive fibrous interstitial lung disease of unknown etiology. IPF is also considered to be among the independent risk factors for lung cancer, increasing the risk of lung cancer by 7% and 20%. The incidence of IPF complicated with lung cancer, especially non-small cell lung cancer (NSCLC), is increasing gradually, but there is no consensus on unified management and treatment. IPF and NSCLC have similar pathological features. Both appear in the surrounding area of the lung. In pathients with IPF complicated with NSCLC, NSCLC often develops from the honeycomb region of IPF, but the mechanism of NSCLC induced by IPF remains unclear. In addition, IPF and NSCLC have similar genetic, molecular and cellular processes and common signal transduction pathways. The universal signal pathways targeting IPF and NSCLC will become potential therapeutic drugs for IPF complicated with NSCLC. This article examines the main molecular mechanisms involved in IPF and NSCLC and the research progress of drugs under development targeting these signal pathways.
.
Humans
;
Carcinoma, Non-Small-Cell Lung/genetics*
;
Idiopathic Pulmonary Fibrosis/drug therapy*
;
Lung Neoplasms/genetics*
;
Lung/pathology*
;
Signal Transduction
7.Differential mRNA expression in C57BL/6 mice with bleomycin-induced pulmonary fibrosis and its association with LncRNA co-expression network.
Xuefei YU ; Li LI ; Linxin ZHENG ; Weifeng LI
Journal of Southern Medical University 2021;41(1):39-46
OBJECTIVE:
To study the changes in mRNA and long non-coding RNA (lncRNA) expression profiles in a mouse model of bleomycin-induced lung fibrosis and identify lung fibrosis-related mRNA for coding-noncoding coexpression (CNC) bioinformatics analysis of the differential lncRNAs.
METHODS:
Lung fibrosis was induced by intratracheal injection of bleomycin in 10 C57BL/6 mice and another 10 mice with intratracheal injection of saline served as the control group. Lung tissues were harvested from the mice at 14 days after the injections and lung fibrosis was assessed using Masson and HE staining. LncRNA chip technology was used to screen the differentially expressed mRNAs and lncRNAs in mice with lung fibrosis, and GO and KEGG pathway analyses of the differential mRNAs were performed using NCBI database and UCSC database to identify possible fibrosis-related mRNAs, which were validated by qRT-PCR to construct a coding and non-coding co- expression network with the differential lncRNAs.
RESULTS:
Compared with the control mice, the mice with intratracheal injection of bleomycin showed obvious lung fibrosis. The results of gene chip analysis showed that 127 mRNAs were upregulated and 184 mRNAs were down-regulated in the model group as compared with the control group. GO and pathway analysis suggested that the differentially expressed genes participated mainly in immune response, cell differentiation, and cytoskeletons; the involved signal pathways were associated mainly with cytokine and cytokine receptor interaction and chemokine signal transduction. Bioinformatics analysis identified a significant coexpression network between the fibrosisrelated mRNA and the differentially expressed lncRNA.
CONCLUSIONS
In mice with lung fibrosis, the differential expressions of fibrosis-related mRNAs in the lung tissues are closely correlated with the co- expressions of a large number of differential lncRNAs, which points to a new direction for investigation of the pathogenesis of pulmonary fibrosis.
Animals
;
Bleomycin/toxicity*
;
Gene Expression Profiling
;
Gene Regulatory Networks
;
Mice
;
Mice, Inbred C57BL
;
Pulmonary Fibrosis/genetics*
;
RNA, Long Noncoding/genetics*
;
RNA, Messenger/genetics*
9.Role of various imbalances centered on alveolar epithelial cell/fibroblast apoptosis imbalance in the pathogenesis of idiopathic pulmonary fibrosis.
Qing WANG ; Zhao-Liang XIE ; Qi WU ; Zhi-Xian JIN ; Chao YANG ; Jing FENG
Chinese Medical Journal 2021;134(3):261-274
There have been recent extensive studies and rapid advancement on the pathogenesis underlying idiopathic pulmonary fibrosis (IPF), and intricate pathogenesis of IPF has been suggested. The purpose of this study was to clarify the logical relationship between these mechanisms. An extensive search was undertaken of the PubMed using the following keywords: "etiology," "pathogenesis," "alveolar epithelial cell (AEC)," "fibroblast," "lymphocyte," "macrophage," "epigenomics," "histone," acetylation," "methylation," "endoplasmic reticulum stress," "mitochondrial dysfunction," "telomerase," "proteases," "plasminogen," "epithelial-mesenchymal transition," "oxidative stress," "inflammation," "apoptosis," and "idiopathic pulmonary fibrosis." This search covered relevant research articles published up to April 30, 2020. Original articles, reviews, and other articles were searched and reviewed for content; 240 highly relevant studies were obtained after screening. IPF is likely the result of complex interactions between environmental, genetic, and epigenetic factors: environmental exposures affect epigenetic marks; epigenetic processes translate environmental exposures into the regulation of chromatin; epigenetic processes shape gene expression profiles; in turn, an individual's genetic background determines epigenetic marks; finally, these genetic and epigenetic factors act in concert to dysregulate gene expression in IPF lung tissue. The pathogenesis of IPF involves various imbalances including endoplasmic reticulum, telomere length homeostasis, mitochondrial dysfunction, oxidant/antioxidant imbalance, Th1/Th2 imbalance, M1-M2 polarization of macrophages, protease/antiprotease imbalance, and plasminogen activation/inhibition imbalance. These affect each other, promote each other, and ultimately promote AEC/fibroblast apoptosis imbalance directly or indirectly. Excessive AEC apoptosis and impaired apoptosis of fibroblasts contribute to fibrosis. IPF is likely the result of complex interactions between environmental, genetic, and epigenetic factors. The pathogenesis of IPF involves various imbalances centered on AEC/fibroblast apoptosis imbalance.
Alveolar Epithelial Cells
;
Apoptosis
;
Endoplasmic Reticulum Stress
;
Fibroblasts
;
Humans
;
Idiopathic Pulmonary Fibrosis/genetics*
10.Human umbilical cord mesenchymal stem cell-derived exosomes alleviate pulmonary fibrosis in mice by inhibiting epithelial-mesenchymal transition.
Jing YANG ; Huazhong HU ; Shuqin ZHANG ; Linrui JIANG ; Yuanxiong CHENG ; Haojun XIE ; Xiaoyan WANG ; Jiaohua JIANG ; Hong WANG ; Qun ZHANG
Journal of Zhejiang University. Medical sciences 2020;40(7):988-994
OBJECTIVE:
To study the anti- fibrotic effect of human umbilical cord mesenchymal stem cell-derived exosomes (hUCMSC-EXOs) and explore the mechanism.
METHODS:
Twenty-four C57 BL/6 mice were divided into 4 groups (=6), including the control group treated with intratracheal injection of saline (3 mg/kg); lung fibrosis model group with intratracheal injection of 1.5 mg/mL bleomycin solution (prepared with saline, 3 mg/kg); EXOs1 group with intratracheal injection of 1.5 mg/mL bleomycin solution (3 mg/kg) and hUCMSC-EXOs (100 μg/250 μL, given by tail vein injection on the next day after modeling); and EXOs2 group with intratracheal injection of 1.5 mg/mL bleomycin solution (3 mg/kg) and hUCMSC-EXOs (100 μg/250 μL, given by tail vein injection on the 10th day after modeling). At 21 days after modeling, pulmonary index, lung tissue pathology and collagen deposition in the mice were assessed using HE staining and Masson staining. The expression level of TGF-β1 was detected using ELISA, and vimentin, E-cadherin and phosphorylated Smad2/3 (p-Smad2/3) were detected using immunohistochemical staining. CCK8 assay was used to evaluate the effect of hUCMSCEXOs on the viability of A549 cells, and Western blotting was used to detect the expression levels of p-Smad2/3, vimentin, and E-cadherin in the cells.
RESULTS:
Compared with those in the model group, the mice treated with hUCMSC-EXOs showed significantly reduced the pulmonary index ( < 0.05), collagen deposition, lung tissue pathologies, lowered expressions of TGF-β1 ( < 0.05), vimentin, and p-Smad2/3 and increased expression of E-cadherin. hUCMSC-EXOs given on the second day produced more pronounced effect than that given on the 11th day ( < 0.05). CCK8 assay results showed that hUCMSC-EXOs had no toxic effects on A549 cells ( > 0.05). Western blotting results showed that hUCMSC-EXOs treatment significantly increased the expression of E-cadherin and decreased the expressions of p-Smad2/3 and vimentin in the cells.
CONCLUSIONS
hUCMSC-EXOs can alleviate pulmonary fibrosis in mice by inhibiting epithelialmesenchymal transition activated by the TGF-β1/Smad2/3 signaling pathway, and the inhibitory effect is more obvious when it is administered on the second day after modeling.
Animals
;
Epithelial-Mesenchymal Transition
;
Exosomes
;
Gene Expression Profiling
;
Gene Expression Regulation
;
Humans
;
Mesenchymal Stem Cells
;
cytology
;
Mice
;
Pulmonary Fibrosis
;
therapy
;
Transforming Growth Factor beta1
;
genetics
;
Umbilical Cord
;
cytology

Result Analysis
Print
Save
E-mail