1.Inhibitory effect of Panax notoginseng saponins on alveolar epithelial to mesenchymal transition.
Zhou-xin REN ; Hai-bin YU ; Jian-sheng LI ; Jun-ling SHEN ; Jun-kai LI ; Shan LUO
China Journal of Chinese Materia Medica 2015;40(23):4667-4671
In the study, the effects of Panax notoginseng saponins (PNS) on alveolar epithelial to mesenchymal transition (EMT) and extracellular matrix degradation were observed in a type of human alveolar epithelial cell, A549 cells, stimulated by TGF-beta1. Firstly, MTT method was applied to evaluation of cellular proliferation and found that PNS from 12.5 mg x L(-1) to 200 mg x L(-1) dosage could not inhibit significantly cellular proliferation. Then, cells were divided into five groups, normal group, TGF-beta1 group, TGF-beta1 + 50 mg x L(-1) PNS group, TGF-beta1 + 100 mg x L(-1) PNS group and TGF-beta1 + 200 mg x L(-1) PNS group. Normal cells were not stimulatec by TGF-beta1; TGF-beta1 cells were only stimulated by TGF-beta1 and the other cells were stimulated by TGF-beta1 with different doses of PNS, respectively. After stimulation, cells and supernatants were collected for assays. Cellular roundness was applied to quantitative evaluation of morphological change. Immunocytochemistry was applied to examine E-cadherion, a-SMA and FN proteins expression in the cells. Enzyme linked-immunosorbent assay was applied to MMP-9 and TIMP-1 levels. The results showed that EMT of A549 cells was induced by TGF-beta1, showing significant change of roundness, E-cadherion, alpha-SMA and FN (P < 0.05, P < 0.01). Compared to TGF-beta1, PNS significantly inhibited the changes of roundness (P < 0.05), FN and alpha-SMA (P < 0.05, P < 0.01) and not significantly inhibited the change of E-cadherion. Furthermore, MMP-9 levels were significantly increased by TGFbeta1 stimulation (P < 0.05), without significant change of TIMP-1. Compared with TGF-beta1, PNS could significantly increase MMP-9 level (P < 0.05) and decrease TIMP-1 levels (P < 0.05, P < 0.01). In conclusion, PNS could inhibit alveolar epithelial cell EMT induced by TGF-beta1, with increase of extracellular matrix degradation ability, which showed anti-fibrosis of lung ability.
Cell Proliferation
;
drug effects
;
Drugs, Chinese Herbal
;
pharmacology
;
Epithelial-Mesenchymal Transition
;
drug effects
;
Humans
;
Matrix Metalloproteinase 9
;
metabolism
;
Panax notoginseng
;
chemistry
;
Pulmonary Alveoli
;
cytology
;
drug effects
;
metabolism
;
Saponins
;
pharmacology
;
Transforming Growth Factor beta1
;
metabolism
2.Effects of Postnatal Dexamethasone or Hydrocortisone in a Rat Model of Antenatal Lipopolysaccharide and Neonatal Hyperoxia Exposure.
Hyun Ju LEE ; Beyong Il KIM ; Eung Sang CHOI ; Chang Won CHOI ; Ee Kyung KIM ; Han Suk KIM ; Jung Hwan CHOI
Journal of Korean Medical Science 2012;27(4):395-401
The aim of our study was to investigate the differential effects of dexamethasone (DXM) and hydrocortisone (HCS) on somatic growth and postnatal lung development in a rat model of bronchopulmonary dysplasia (BPD). A rat model of BPD was induced by administering intra-amniotic lipopolysaccharide (LPS) and postnatal hyperoxia. The rats were treated with a 6-day (D1-D6) tapering course of DXM (starting dose 0.5 mg/kg/day), HCS (starting dose 2 mg/kg/day), or an equivalent volume of normal saline. DXM treatment in a rat model of BPD induced by LPS and hyperoxia was also associated with a more profound weight loss compared to control and LPS + O2 groups not exposed to corticosteroid, whereas HCS treatment affected body weight only slightly. Examination of lung morphology showed worse mean cord length in both LPS + O2 + DXM and LPS + O2 + HCS groups as compared to the LPS + O2 alone group, and the LPS + O2 + DXM group had thicker alveolar walls than the LPS + O2 group at day 14. The HCS treatment was not significantly associated with aberrant alveolar wall thickening and retarded somatic growth. The use of postnatal DXM or HCS in a rat model of BPD induced by intra-amniotic LPS and postnatal hyperoxia appeared detrimental to lung growth, but there was less effect in the case of HCS. These findings suggest that effect of HCS on somatic growth and pulmonary outcome may be better tolerated in neonates for preventing and/or treating BPD.
Amnion/drug effects
;
Animals
;
Animals, Newborn
;
Anti-Inflammatory Agents/*pharmacology
;
Dexamethasone/*pharmacology
;
Disease Models, Animal
;
Female
;
Hydrocortisone/*pharmacology
;
*Hyperoxia
;
Lipopolysaccharides/toxicity
;
Lung Diseases/*pathology
;
Oxygen/metabolism
;
Pulmonary Alveoli/*drug effects/growth & development/pathology
;
Rats
;
Rats, Sprague-Dawley
3.Deferoxamine Improves Alveolar and Pulmonary Vascular Development by Upregulating Hypoxia-inducible Factor-1alpha in a Rat Model of Bronchopulmonary Dysplasia.
Chang Won CHOI ; Juyoung LEE ; Hyun Ju LEE ; Hyoung Sook PARK ; Yang Sook CHUN ; Beyong Il KIM
Journal of Korean Medical Science 2015;30(9):1295-1301
Fetal lung development normally occurs in a hypoxic environment. Hypoxia-inducible factor (HIF)-1alpha is robustly induced under hypoxia and transactivates many genes that are essential for fetal development. Most preterm infants are prematurely exposed to hyperoxia, which can halt hypoxia-driven lung maturation. We were to investigate whether the HIF-1alpha inducer, deferoxamine (DFX) can improve alveolarization in a rat model of bronchopulmonary dysplasia (BPD). A rat model of BPD was produced by intra-amniotic lipopolysaccharide (LPS) administration and postnatal hyperoxia (85% for 7 days), and DFX (150 mg/kg/d) or vehicle was administered to rat pups intraperitoneally for 14 days. On day 14, the rat pups were sacrificed and their lungs were removed and examined. A parallel in vitro study was performed with a human small airway epithelial cell line to test whether DFX induces the expression of HIF-1alpha and its target genes. Alveolarization and pulmonary vascular development were impaired in rats with BPD. However, DFX significantly ameliorated these effects. Immunohistochemical analysis showed that HIF-1alpha was significantly upregulated in the lungs of BPD rats treated with DFX. DFX was also found to induce HIF-1alpha in human small airway epithelial cells and to promote the expression of HIF-1alpha target genes. Our data suggest that DFX induces and activates HIF-1alpha, thereby improving alveolarization and vascular distribution in the lungs of rats with BPD.
Animals
;
Bronchopulmonary Dysplasia/*drug therapy/*metabolism/pathology
;
Deferoxamine/*administration & dosage
;
Female
;
Hypoxia-Inducible Factor 1, alpha Subunit/*metabolism
;
Male
;
Pulmonary Alveoli/drug effects/*growth & development/metabolism/pathology
;
Pulmonary Veins/drug effects/*growth & development/pathology
;
Rats
;
Rats, Sprague-Dawley
;
Treatment Outcome
;
Up-Regulation/drug effects
4.Effect of phosgene on apoptosis of alveolar type II cells and vascular endothelial growth factor in exposed mice.
Wen-li LI ; Chun-xu HAI ; Xu-jun QIN ; Xin LIANG ; Hong-li CHEN
Chinese Journal of Industrial Hygiene and Occupational Diseases 2004;22(3):197-199
OBJECTIVETo study the apoptosis of alveolar type II cells, alterations of vascular endothelial growth factor (VEGF), VEGF receptor (Flt1) in serum and lung and expression of VEGF mRNA in lung in pulmonary edema mice induced by phosgene.
METHODSTwenty-six BALB/C mice were randomly divided into 2 groups: control group, exposed group (13 mice in each group). Mice of exposed group were intoxicated by inhalation of phosgene 11.9 mg/L for 5 minutes. Mice of control group were treated as the same way by inhalation of air. Isolation of mice alveolus type II cells 4 h after intoxication was carried out to observe their apoptosis under electron microscope. Contents of VEGF and Flt1 in lung and serum by ELISA, and expression of VEGF mRNA were determined.
RESULTSAlveolar type II cells were identified by tannic acid staining and electron microscopy. After exposed to 11.9 mg/L of phosgene for 5 minutes, the apoptotic body in alveolus type II cells was found in exposed group. The contents of VEGF in serum and lung and Flt1 in lung of exposed mice [(134.07 +/- 120.26), (477.76 +/- 98.06), (1,2818.48 +/- 2,304.15) pg/ml] were significantly lower than those of control group [(445.57 +/- 173.30), (1,026.87 +/- 474.56), (21,976.51 +/- 7,421.01) pg/ml, P < 0.05] but the content of Flt1 in serum [(2,369.56 +/- 381.70) pg/ml] was higher than that in control group [(1,898.00 +/- 453.69) pg/ml, P < 0.05]. The expression of VEGF mRNA in pulmonary edema mice was decreased.
CONCLUSIONPhosgene can induce apoptosis of alveolar type II cells, and decrease in the content of VEGF and Flt1, and expression of VEGF mRNA in lung.
Animals ; Apoptosis ; drug effects ; Cells, Cultured ; Chemical Warfare Agents ; toxicity ; Endothelial Growth Factors ; biosynthesis ; genetics ; Enzyme-Linked Immunosorbent Assay ; Male ; Mice ; Mice, Inbred BALB C ; Phosgene ; toxicity ; Pulmonary Alveoli ; drug effects ; metabolism ; pathology ; Pulmonary Edema ; chemically induced ; RNA, Messenger ; biosynthesis ; genetics ; Random Allocation ; Vascular Endothelial Growth Factor A ; analysis ; genetics ; physiology ; Vascular Endothelial Growth Factor Receptor-1 ; analysis ; genetics
5.Effect of hepatocyte growth factor on proliferation and apoptosis of hyperoxia exposed type II alveolar epithelial cells isolated from premature rat lungs.
Li-li ZHONG ; Yu-jia YANG ; Chen-tao LIU ; Min XIE
Journal of Central South University(Medical Sciences) 2007;32(6):1051-1057
OBJECTIVE:
To explore the effect of hepatocyte growth factor (HGF) on the proliferation, apoptosis and function of hyperoxia exposed Type II alveolar epithelial cells (AEC II) isolated from premature rat lungs, and to explore the mechanism of the protective effect of HGF on hyperoxia-induced lung injury.
METHODS:
Type II alveolar epithelial cells from fetal rat lungs were cultured. After being purified, AEC II was randomly divided to 4 groups: air group (Air), hyperoxia group (HO), air plus hepatocyte growth factor group (Air+HGF), hyperoxia plus hepatocyte growth factor group (HO+HGF) . The mRNA levels of surfactant associated protein, SPs (including SPA, SPB, SPC) were measured by RT-PCR. The proliferation and apoptosis of AEC II were analyzed with flow cytometric assay and Western blot.
RESULTS:
(1) Compared with Air group, the apoptosis rate increased significantly in the HO group, while G(2)/M phase percentage and the protein expression levels of proliferating cell nuclear antigen (PCNA) decreased significantly (P<0.01); the S phase percentage and the protein expression levels of PCNA increased significantly in the Air+HGF group. (2) In the HO +HGF group, the apoptosis rate was not significantly different, G0/G1 phase percentage decreased significantly, S phase, G(2)/M phase percentage and the protein expression levels of PCNA increased significantly compared with the HO group. (3) SPs mRNA levels significantly decreased in the HO group compared with those in the Air group. After HGF was added, SPs mRNA levels increased in the HO +HGF group and the Air+HGF group compared with the HO group.
CONCLUSION
Hyperoxia can inhibit the proliferation, increase the apoptosis rate and decrease SPs mRNAs levels of AEC II in vitro in premature rats, while HGF can partly inhibit the changes of SPs mRNAs levels and cell proliferation of AEC II resulted from hyperoxia, and HGF may play a protective role in hyperoxia-induced lung injury.
Animals
;
Animals, Newborn
;
Apoptosis
;
drug effects
;
Cell Proliferation
;
drug effects
;
Cells, Cultured
;
Epithelial Cells
;
drug effects
;
metabolism
;
Female
;
Hepatocyte Growth Factor
;
pharmacology
;
Hyperoxia
;
metabolism
;
pathology
;
Male
;
Pregnancy
;
Proliferating Cell Nuclear Antigen
;
metabolism
;
Pulmonary Alveoli
;
cytology
;
drug effects
;
Pulmonary Surfactant-Associated Proteins
;
metabolism
;
Rats
;
Rats, Sprague-Dawley
6.Relationship between artesunate influence on the process of TGF-beta1 induced alveolar epithelial cells transform into mesenchymal cells and on idiopathic pulmonary fibrosis.
Chang-Ming WANG ; Juan CHEN ; Ming JIANG ; Xiu-Ping XUAN ; Hong-Xiu LI
Acta Pharmaceutica Sinica 2014;49(1):142-147
This study is to investigate the effect of artesunate on transforming growth factor-beta1 (TGF-beta1) induced epithelial-mesenchymal transition (EMT) and its possible mechanism. After the in vitro cultured RLE-6TN cells were treated with TGF-beta1 then artesunate intervened on it, after 24 h, expression of the markers of mesenchymal cell was assayed using Western blotting and real-time PCR analysis. Western blotting was also used to detect the effect of TGF-beta1 on the Smad3 and Smad7 expressions of RLE-6TN cells. Morphological alterations were examined by phase-contrast microscope, and ultrastructure changes by electron microscope. Incubation of RLE-6TN cells with TGF-beta1 resulted in the up-regulation of the expression of the mesenchymal cell markers, after artesunate intervened on it, resulted in the down-regulation of the expression. Meanwhile, incubation with artesunate intervened on RLE-6TN cells could lead to the apparent down-regulation of the expression of Smad3 and up-regulation of Samd7 and the transition of RLE-6TN cells to mesenchymal-like by TGF-beta1 induction, after artesunate intervened on it, RLE-6TN cells to epithelial-like. TGF-beta1 induced epithelial-mesenchymal transition process; artesunate can inhibit TGF-beta1-induced epithelial-mesenchymal transition process, the possible mechanism is up-regulation of the expression of Smad7 and down-regulation of the expression of Smad3, meanwhile inhibits phosphorylation of Smad3.
Actins
;
genetics
;
metabolism
;
Animals
;
Artemisia
;
chemistry
;
Artemisinins
;
isolation & purification
;
pharmacology
;
Cell Line
;
Cell Proliferation
;
drug effects
;
Epithelial Cells
;
cytology
;
metabolism
;
Epithelial-Mesenchymal Transition
;
drug effects
;
Idiopathic Pulmonary Fibrosis
;
pathology
;
Plants, Medicinal
;
chemistry
;
Pulmonary Alveoli
;
cytology
;
RNA, Messenger
;
metabolism
;
Rats
;
Smad3 Protein
;
genetics
;
metabolism
;
Smad7 Protein
;
genetics
;
metabolism
;
Transforming Growth Factor beta1
;
pharmacology
;
Vimentin
;
genetics
;
metabolism
7.Inhibitory effect of receptor for advanced glycation end products (RAGE) on the TGF-beta-induced alveolar epithelial to mesenchymal transition.
Jeong Sup SONG ; Chun Mi KANG ; Chan Kwon PARK ; Hyung Kyu YOON ; Sook Young LEE ; Joong Hyun AHN ; Hwa Sik MOON
Experimental & Molecular Medicine 2011;43(9):517-524
Idiopathic pulmonary fibrosis (IPF) is a lethal parenchymal lung disease characterized by myofibroblast proliferation. Alveolar epithelial cells (AECs) are thought to produce myofibroblasts through the epithelial to mesenchymal transition (EMT). Receptor for advanced glycation end products (RAGE) is a member of the immunoglobulin superfamily of cell surface receptors whose activation is associated with renal fibrosis during diabetes and liver fibrosis. RAGE is expressed at low basal levels in most adult tissues except the lung. In this study, we evaluated the interaction of ligand advanced glycation end products (AGE) with RAGE during the epithelial to myofibroblast transition in rat AECs. Our results indicate that AGE inhibited the TGF-beta-dependent alveolar EMT by increasing Smad7 expression, and that the effect was abolished by RAGE siRNA treatment. Thus, the induction of Smad7 by the AGE-RAGE interaction limits the development of pulmonary fibrosis by inhibiting TGF-beta-dependent signaling in AECs.
Animals
;
Epithelial Cells/cytology
;
Epithelial-Mesenchymal Transition/*drug effects
;
Glycosylation End Products, Advanced/genetics/*metabolism
;
Idiopathic Pulmonary Fibrosis/metabolism
;
Pulmonary Alveoli/cytology
;
RNA, Small Interfering/genetics
;
Rats
;
Receptors, Immunologic/genetics/*metabolism
;
Smad7 Protein/genetics/*metabolism
;
Transforming Growth Factor beta/genetics/metabolism
8.Influence of human bone marrow-derived mesenchymal stem cells on the lung of newborn rats damaged by hyperoxia.
Zhao-fang TIAN ; Jiang DU ; Xue-mei FU ; Bin WANG ; Xiao-yang HONG ; Zhi-chun FENG
Chinese Journal of Pediatrics 2008;46(1):4-8
OBJECTIVETo evaluate whether human mesenchymal stem cells (hMSCs) administration alter the clinical course of hyperoxia-induced lung injury.
METHODShMSCs were obtained from bone marrow aspirates from healthy donors after informed consent was signed, hMSCs were separated, cultured, amplified, identified and labeled with BrdU. For BrdU labeling, a sterile stock solution was added to the culture medium 48 h before the end of culture, at a final concentration of 10 micromol/L. Thirty-two 3-day old SD rats from four litters were randomly divided into four groups, as hyperoxia exposed + hMSC group (A), air-exposed + hMSC group (B), hyperoxia exposed group (C), and air-exposed group (D). The rats from the group A and the group C were placed in a sealed Plexiglas chamber with a minimal in- and outflow, providing six to seven exchanges per hour of the chamber volume and maintaining O2 levels above 95%, while the rats in the group B and the group D were only exposed to room air. Seven days later, all of them were taken out of the chamber, rats in the group A and B were injected intraperitoneally with hMSCs (1 x 10(5) in 50 microl of PBS) immediately, while the rats in the group C and D were only treated with 50 microl of PBS 3 days later. All the animals were sacrificed by an injection of sodium pentobarbital (120 mg/kg), perfused with cold 0.9% NaCl, and the left lungs were removed, the upper lobes of which were ground as tissue homogenates and used for ELISA, while the inferior lobes were stored at -70 degrees C until use for RT-PCR. The right lungs were fixed in situ for 2 h by the intratracheal instillation with 10% neutral formalin and then postfixed for 24 h. Sagittal sections (4-microm) of paraffin-embedded middle lobe and upper lobe of the right lung were used for immunohistochemistry and histology, respectively.
RESULTS(1) There was a significant difference in the value of RAC (raditive alveoli coant) among the 4 groups (11.145 +/- 1.331, 13.941 +/- 0.985, 9.595 +/- 0.672, 14.819 +/- 1.080, F = 43.234, P = 0.000). RAC in group A and C were significantly reduced compared with subjects in group D (P < 0.05, P < 0.05); and there was also a significant difference between group A and group C (P < 0.05), but not between group B and D subjects (P > 0.05). (2) There were significant differences in the levels of both TNFalpha and TGFbeta(1) in the homogenate of lungs among the 4 groups (142.933 +/- 24.017, 79.033 +/- 11.573, 224.088 +/- 41.915, 76.500 +/- 10.373, F = 59.970, P = 0.000; 1726.484 +/- 91.086, 1530.359 +/- 173.441, 2047.717 +/- 152.057, 1515.777 +/- 131.049, F = 24.977, P = 0.000). The levels of TNFalpha and TGFbeta1 were significantly elevated in both group A and group C when compared with subjects in group D (P < 0.05 for both). Concentrations of TNFalpha and TGFbeta1 were both significantly decreased in group A versus group C (P < 0.05 for both). There was no significant difference between group B and D subjects in the fields of TNFalpha and TGFbeta(1) (P > 0.05 for both). (3) BrdU-labelled cells were observed at alveolar wall and bronchioles in both group A and group B, and there was a significant difference in BrdU-labeled cells between two groups (0.230 +/- 0.026, 0.190 +/- 0.015; t = 3.769, P = 0.002), but none was found in group C and group D. Electrophoresis of the PCR products showed a 224 bp band, specific for Alu mRNA, in 7 of 8 rats of group A and 5 of 8 rats of group B, respectively, but no such band was found in group C and group D.
CONCLUSIONhMSCs administered by intraperitoneal injection could be implanted in the lungs of newborn rats, and they could effectively protect the rats against damage to the lungs caused by hyperoxia.
Animals ; Animals, Newborn ; Bone Marrow Cells ; drug effects ; Bromodeoxyuridine ; pharmacology ; Cell Communication ; Cell Differentiation ; drug effects ; Cells, Cultured ; Hematopoietic Stem Cells ; Humans ; Hyperoxia ; metabolism ; Infant, Newborn ; Lung ; pathology ; Lung Injury ; pathology ; Mesenchymal Stem Cell Transplantation ; Mesenchymal Stromal Cells ; drug effects ; physiology ; Oxygen ; metabolism ; Pulmonary Alveoli ; pathology ; Rats ; Rats, Sprague-Dawley ; Reverse Transcriptase Polymerase Chain Reaction ; Transforming Growth Factor beta ; analysis ; Tumor Necrosis Factor-alpha ; analysis