1.L-tetrahydropalamatine inhibits tumor necrosis factor-α-induced monocyte-endothelial cell adhesion through downregulation of intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 involving suppression of nuclear factor-κ B signaling pathway.
Bin-rui YANG ; Nan YU ; Yan-hui DENG ; Pui Man HOI ; Bin YANG ; Guang-yu LIU ; Wei-hong CONG ; Simon Ming-yuen LEE
Chinese journal of integrative medicine 2015;21(5):361-368
OBJECTIVETo investigate whether I-tetrahydropalmatine (I-THP), an alkaloid mainly present in Corydalis family, could ameliorate early vascular inflammatory responses in atherosclerotic processes.
METHODSFluorescently labeled monocytes were co-incubated with human umbilical vein endothelial cells (HUVECs), which were pretreated with I-THP and then simulated with tumor necrosis factor (TNF)-α in absence of I-THP to determine if I-THP could reduce thecytokine-induced adhesion of monocytes to HUVECs. Then I-THP were further studied the underlying mechanisms through observing the transcriptional and translational level of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) and the nuclear translocation of nuclear factor (NF)-κ B in HUVECs.
RESULTSL-THP could block TNF-α-induced adhesion of monocytes to HUVECs and could significantly inhibited the expression of ICAM-1 and VCAM-1 on cell surface by 31% and 36% at 30 μ mol/L. L-THP pretreatment could also markedly reduce transcriptional and translational level of VCAM-1 as well as mildly reduce the total protein and mRNA expression levels of ICAM-1. Furthermore, I-THP attenuated TNF-α-stimulated NF-κ B nuclear translocation.
CONCLUSIONThese results provide evidences supporting that I-THP could be a promising compound in the prevention and treatment of the early vascular inflammatory reaction in atherosclerosis by inhibiting monocyte adhesion to vascular endothelial cell through downregulating ICAM-1 and VCAM-1 in vascular endothelial cell based on suppressing NF-κ B.
Berberine Alkaloids ; pharmacology ; Cell Adhesion ; drug effects ; Cell Nucleus ; drug effects ; metabolism ; Down-Regulation ; drug effects ; Human Umbilical Vein Endothelial Cells ; cytology ; drug effects ; metabolism ; Humans ; Intercellular Adhesion Molecule-1 ; genetics ; metabolism ; Monocytes ; cytology ; drug effects ; metabolism ; NF-kappa B ; metabolism ; Protein Transport ; drug effects ; RNA, Messenger ; genetics ; metabolism ; Signal Transduction ; drug effects ; Transcription Factor RelA ; metabolism ; Tumor Necrosis Factor-alpha ; pharmacology ; Vascular Cell Adhesion Molecule-1 ; genetics ; metabolism
2.Memantine Improves Cognitive Function and Alters Hippocampal and Cortical Proteome in Triple Transgenic Mouse Model of Alzheimer's Disease
Xinhua ZHOU ; Liang WANG ; Wei XIAO ; Zhiyang SU ; Chengyou ZHENG ; Zaijun ZHANG ; Yuqiang WANG ; Benhong XU ; Xifei YANG ; Maggie Pui Man HOI
Experimental Neurobiology 2019;28(3):390-403
Memantine is a non-competitive N-methyl-D-aspartate receptor (NMDAR) antagonist clinically approved for moderate-to-severe Alzheimer's disease (AD) to improve cognitive functions. There is no report about the proteomic alterations induced by memantine in AD mouse model yet. In this study, we investigated the protein profiles in the hippocampus and the cerebral cortex of AD-related transgenic mouse model (3×Tg-AD) treated with memantine. Mice (8-month) were treated with memantine (5 mg/kg/bid) for 4 months followed by behavioral and molecular evaluation. Using step-down passive avoidance (SDA) test, novel object recognition (NOR) test and Morris water maze (MWM) test, it was observed that memantine significantly improved learning and memory retention in 3xTg-AD mice. By using quantitative proteomic analysis, 3301 and 3140 proteins in the hippocampus and the cerebral cortex respectively were identified to be associated with AD abnormalities. In the hippocampus, memantine significantly altered the expression levels of 233 proteins, among which PCNT, ATAXIN2, TNIK, and NOL3 were up-regulated, and FLNA, MARK 2 and BRAF were down-regulated. In the cerebral cortex, memantine significantly altered the expression levels of 342 proteins, among which PCNT, PMPCB, CRK, and MBP were up-regulated, and DNM2, BRAF, TAGLN 2 and FRY1 were down-regulated. Further analysis with bioinformatics showed that memantine modulated biological pathways associated with cytoskeleton and ErbB signaling in the hippocampus, and modulated biological pathways associated with axon guidance, ribosome, cytoskeleton, calcium and MAPK signaling in the cerebral cortex. Our data indicate that memantine induces higher levels of proteomic alterations in the cerebral cortex than in the hippocampus, suggesting memantine affects various brain regions in different manners. Our study provides a novel view on the complexity of protein responses induced by memantine in the brain of AD.
Alzheimer Disease
;
Animals
;
Axons
;
Brain
;
Calcium
;
Cerebral Cortex
;
Cognition
;
Computational Biology
;
Cytoskeleton
;
Hippocampus
;
Learning
;
Memantine
;
Memory
;
Mice
;
Mice, Transgenic
;
N-Methylaspartate
;
Proteome
;
Ribosomes
;
Water