1.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
2.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
3.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
4.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
5.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
6.Beneficial Effects of Dendrobium officinale Extract on Insomnia Rats Induced by Strong Light and Noise via Regulating GABA and GABAA Receptors.
Heng-Pu ZHOU ; Jie SU ; Ke-Jian WEI ; Su-Xiang WU ; Jing-Jing YU ; Yi-Kang YU ; Zhuang-Wei NIU ; Xiao-Hu JIN ; Mei-Qiu YAN ; Su-Hong CHEN ; Gui-Yuan LYU
Chinese journal of integrative medicine 2025;31(6):490-498
OBJECTIVE:
To explore the therapeutic effects and underlying mechanisms of Dendrobium officinale (Tiepi Shihu) extract (DOE) on insomnia.
METHODS:
Forty-two male Sprague-Dawley rats were randomly divided into 6 groups (n=7 per group): normal control, model control, melatonin (MT, 40 mg/kg), and 3-dose DOE (0.25, 0.50, and 1.00 g/kg) groups. Rats were raised in a strong-light (10,000 LUX) and -noise (>80 db) environment (12 h/d) for 16 weeks to induce insomnia, and from week 10 to week 16, MT and DOE were correspondingly administered to rats. The behavior tests including sodium pentobarbital-induced sleep experiment, sucrose preference test, and autonomous activity test were used to evaluate changes in sleep and emotions of rats. The metabolic-related indicators such as blood pressure, blood viscosity, blood glucose, and uric acid in rats were measured. The pathological changes in the cornu ammonis 1 (CA1) region of rat brain were evaluated using hematoxylin and eosin staining and Nissl staining. Additionally, the sleep-related factors gamma-aminobutyric acid (GABA), glutamate (GA), 5-hydroxytryptamine (5-HT), and interleukin-6 (IL-6) were measured using enzyme linked immunosorbent assay. Finally, we screened potential sleep-improving receptors of DOE using polymerase chain reaction (PCR) array and validated the results with quantitative PCR and immunohistochemistry.
RESULTS:
DOE significantly improved rats' sleep and mood, increased the sodium pentobarbital-induced sleep time and sucrose preference index, and reduced autonomic activity times (P<0.05 or P<0.01). DOE also had a good effect on metabolic abnormalities, significantly reducing triglyceride, blood glucose, blood pressure, and blood viscosity indicators (P<0.05 or P<0.01). DOE significantly increased the GABA content in hippocampus and reduced the GA/GABA ratio and IL-6 level (P<0.05 or P<0.01). In addition, DOE improved the pathological changes such as the disorder of cell arrangement in the hippocampus and the decrease of Nissel bodies. Seven differential genes were screened by PCR array, and the GABAA receptors (Gabra5, Gabra6, Gabrq) were selected for verification. The results showed that DOE could up-regulate their expressions (P<0.05 or P<0.01).
CONCLUSION
DOE demonstrated remarkable potential for improving insomnia, which may be through regulating GABAA receptors expressions and GA/GABA ratio.
Animals
;
Dendrobium/chemistry*
;
Rats, Sprague-Dawley
;
Male
;
Sleep Initiation and Maintenance Disorders/blood*
;
Plant Extracts/therapeutic use*
;
Receptors, GABA-A/metabolism*
;
Noise/adverse effects*
;
Light/adverse effects*
;
gamma-Aminobutyric Acid/metabolism*
;
Sleep/drug effects*
;
Rats
;
Receptors, GABA/metabolism*
8.An inductive learning-based method for predicting drug-gene interactions using a multi-relational drug-disease-gene graph.
Jian HE ; Yanling WU ; Linxi YUAN ; Jiangguo QIU ; Menglong LI ; Xuemei PU ; Yanzhi GUO
Journal of Pharmaceutical Analysis 2025;15(8):101347-101347
Computational analysis can accurately detect drug-gene interactions (DGIs) cost-effectively. However, transductive learning models are the hotspot to reveal the promising performance for unknown DGIs (both drugs and genes are present in the training model), without special attention to the unseen DGIs (both drugs and genes are absent in the training model). In view of this, this study, for the first time, proposed an inductive learning-based model for the precise identification of unseen DGIs. In our study, by integrating disease nodes to avoid data sparsity, a multi-relational drug-disease-gene (DDG) graph was constructed to achieve effective fusion of data on DDG intro-relationships and inter-actions. Following the extraction of graph features by utilizing graph embedding algorithms, our next step was the retrieval of the attributes of individual gene and drug nodes. In this way, a hybrid feature characterization was represented by integrating graph features and node attributes. Machine learning (ML) models were built, enabling the fulfillment of transductive predictions of unknown DGIs. To realize inductive learning, this study generated an innovative idea of transforming known node vectors derived from the DDG graph into representations of unseen nodes using node similarities as weights, enabling inductive predictions for the unseen DGIs. Consequently, the final model was superior to existing models, with significant improvement in predicting both external unknown and unseen DGIs. The practical feasibility of our model was further confirmed through case study and molecular docking. In summary, this study establishes an efficient data-driven approach through the proposed modeling, suggesting its value as a promising tool for accelerating drug discovery and repurposing.
9.Study on the mechanism of Yifei xuanfei jiangzhuo formula against vascular dementia
Guifeng ZHUO ; Wei CHEN ; Jinzhi ZHANG ; Deqing HUANG ; Bingmao YUAN ; Shanshan PU ; Xiaomin ZHU ; Naibin LIAO ; Mingyang SU ; Xiangyi CHEN ; Yulan FU ; Lin WU
China Pharmacy 2024;35(18):2207-2212
OBJECTIVE To investigate the mechanism of Yifei xuanfei jiangzhuo formula (YFXF) against vascular dementia (VD). METHODS The differentially expressed genes of YFXF (YDEGs) were obtained by network pharmacology. High-risk genes were screened from YDEGs by using the nomogram model. The optimal machine learning models in generalized linear, support vector machine, extreme gradient boosting and random forest models were screened based on high-risk genes. VD model rats were established by bilateral common carotid artery occlusion, and were randomly divided into model group and YFXF group (12.18 g/kg, by the total amount of crude drugs), and sham operation group was established additionally, with 6 rats in each group. The effects of YFXF on behavior (using escape latency and times of crossing platform as indexes), histopathologic changes of cerebral cortex, and the expression of proteins related to the secreted phosphoprotein 1 (SPP1)/phosphoinositide 3-kinase (PI3K)/protein kinase B (aka Akt) signaling pathway and the mRNA expression of SPP1 in cerebral cortex of VD rats were evaluated. RESULTS A total of 6 YDEGs were obtained, among which SPP1, CCL2, HMOX1 and HSPB1 may be high-risk genes of VD. The generalized linear model based on high-risk genes had the highest prediction accuracy (area under the curve of 0.954). Compared with the model group, YFXF could significantly shorten the escape latency of VD rats, significantly increase the times of crossing platform (P<0.05); improve the pathological damage of cerebral cortex, such as neuronal shrinkage and neuronal necrosis; significantly reduce the expressions of SPP1 protein and mRNA (P<0.05), while significantly increase the phosphorylation levels of PI3K and Akt (P<0.05). CONCLUSIONS VD high-risk genes SPP1, CCL2, HMOX1 and HSPB1 may be the important targets of YFXF. YFXF may play an anti-VD role by down-regulating the protein and mRNA expressions of SPP1 and activating PI3K/Akt signaling pathway.
10.Correlation between interleukin 1β-511C/T polymorphism and essential hypertension in the Yi ethnic group of Yunnan province
Tong YANG ; Yuan XU ; Xingyun PU ; Yiting MA ; Jing YANG ; Xin SHU ; Hongyu PENG ; Yanrui WU ; Li LONG
Basic & Clinical Medicine 2024;44(12):1651-1655
Objective To investigate the correlation between interleukin 1β gene-511C/T polymorphism of and essential hypertension in the Yi ethnic group of Yunnan province.Methods-511C/T polymorphism of interleukin 1β gene was detected by PCR-RFLP in 85 Yi patients with essential hypertension(EH group)and 106 Yi healthy people(control group)in Shuanghe Township,Jinning County,Yunnan Province.Genotype and allele frequencies were analyzed by SPSS 27.0 software,and association analysis was performed.Results The frequency distribution of CC,CT and TT genotypes at the mutation site 511 of the IL-1βgene in EH group was 18.82%,44.71%and 36.47%,respectively,and it was 5.66%,26.42%and 67.92%in the control group.The difference in genotype frequency between the two groups was statistically significant(P<0.05).The allele frequency of C and T in EH group was 41.18%and 58.82%,respectively,and the allele frequency of C and T in control group was 18.87%and 81.13%.The frequency difference of alleles between the two groups was statistically significant(P<0.05).Both genotype frequency and allele frequency found in males and females had statistical differences(P<0.05).Conclusions The distribution of IL-1β gene-511C/T polymorphism is related to the incident of essential hyper-tension among the Yi ethnic group Yunnan Province,and is the susceptibility gene of the Yi ethnic group to essen-tial hypertension.

Result Analysis
Print
Save
E-mail