1.Analysis of beta-lactams-resistance genes in Pseudomonas aeruginosa in burn ward.
Qi-Fa SONG ; Jian ZHENG ; Hui LIN ; Jing-Ye XU ; Chun-Guang JIN ; Guo-Jun LI
Chinese Journal of Burns 2007;23(3):212-215
OBJECTIVETo investigate the resistance genes and antibiotic resistance patterns against beta-lactams in Pseudomonas aeruginosa prevalent in burn ward.
METHODSK-B method was performed to test bacterial resistance patterns against 9 species of beta-lactams in Pseudomonas aeruginosa isolated from wounds and dressings of the patient in burn wards. Seven species of resistance genes against beta-lactams were detected with PCR. Tazobactam-inhibited piperacillin resistance test was performed to study whether the above strains produce extended spectrum beta-lactams.
RESULTSAll 12 strains of bacteria with resistance genes detected were resistant to penicillin and cephalosporins (100%), among them 11 were resistant to all antibiotics. Tazobactam-inhibited piperacillin resistance test demonstrated that all strains with resistance genes were ESBLs.
CONCLUSIONHigh incidence of beta-lactams resistance genes is found in Pseudomonas aeruginosa isolated from burn ward, and they have close relationship with the occurrence of multiple drug-resistance.
Burn Units ; Burns ; microbiology ; Genes, Bacterial ; Humans ; Pseudomonas aeruginosa ; drug effects ; genetics ; isolation & purification ; beta-Lactam Resistance ; genetics
2.Study on the drug-resistant genes associated with beta-lactams and aminoglycosides in clinically isolated Pseudomonas aeruginosa.
Jian-Rong FU ; Qun LIU ; Yan-Hong ZHANG ; Jin-Wei LIU ; Jing LIU ; Jian LI
Chinese Journal of Burns 2007;23(2):108-111
OBJECTIVETo investigate drug-resistant genes associated with beta-lactams and aminoglycosides in clinically isolated Pseudomonas aeruginosa.
METHODSTwenty strains of Pseudomonas aeruginosa were isolated from wound excretion of hospitalized burn patients. The strains resistant to 14 antibiotics were selected for detection of 16 kind of drug-resistant genes (TEM, SHV, OXA-10 cluster, PER, VEB, GES, CARB, CTX-M- I, IMP, VIM, SPM, GIM, DHA, MOX, FOX, oprD2) and 6 kind of aminoglycoside modification genes (aac(3)- I, aac(3)-II, aac(6')-I, aac(6')-II, ant (3")- I , ant(2")- I) in them by PCR.
RESULTSAmong the 20 strains resistant to beta-lactam , all of them were TEM and GES positive (100%), oprD2 gene depletion in 5 strains (25%). All other genes were negative. Among aminoglycoside resistant genes, 20 strains were aac (6') - I positive (100%), 7 were ant (2") - I positive (35%), and negative for other stains.
CONCLUSIONThere were very high existence rates of TEM, GES and aac (6')- I genes in Pseudomonas aeruginosa isolated from clinical burn patients. The fact that GES-5 gene has also been detected in Pseudomonas aeruginosa, suggesting this organism is highly drug resistant in our burn unit.
Aminoglycosides ; pharmacology ; Drug Resistance, Multiple, Bacterial ; genetics ; Humans ; Pseudomonas aeruginosa ; drug effects ; genetics ; isolation & purification ; beta-Lactam Resistance ; genetics ; beta-Lactams ; pharmacology
3.Analysis of the resistance mechanism and homology of carbapenems-resistant Pseudomonas aeruginosa.
Yang LIU ; Qiong DENG ; Yang YU ; Xianwei CAO ; Qunfei XU ; Lagen WAN
Chinese Journal of Burns 2014;30(1):15-20
OBJECTIVETo study the resistance mechanism and homology of carbapenems-resistant Pseudomonas aeruginosa (PA).
METHODSA total of 812 strains of PA (identified) were isolated from sputum, urine, blood, pus, and drainage of patients with burn, severe pneumonia, diabetes, chronic obstructive pneumonia, myocarditis, liver transplantation, or brainstem hemorrhage hospitalized from January to September 2012. Drug resistance of the 812 strains of PA to 15 antibiotics commonly used in clinic, including piperacillin, imipenem, etc., was tested using the automatic microorganism identifying and drug sensitivity analyzer. Among the carbapenems-resistant PA isolates, synergism test with imipenem-ethylene diamine tetraacetic acid (EDTA) and enhancement test with imipenem-EDTA and ceftazidime-EDTA were used to screen metallo-β-lactamase (MBL)-producing strains; modified Hodge test was used to screen strains producing Klebsiella pneumoniae carbapenemases (KPC); the carbapenemase gene, plasmid mediated quinolone resistant (PMQR) gene, and mobile genetic elements (MGE) were detected by polymerase chain reaction (PCR). In addition, a comparative analysis of the PMQR gene carrying level between the carbapenemase gene positive strains and carbapenemase gene negative strains was carried out. The repetitive consensus sequence of Enterobacteriaceae genome PCR (ERIC-PCR) was carried out for gene typing. Moreover, the source and resistance genes of strains with the same genotype were analyzed. Data were processed with Fisher's exact probability test.
RESULTSThe sensitive rates of the 812 strains of PA to ceftriaxone and trimethoprim-sulfamethoxazole were high, respectively 83.07% and 88.19%, and those of the other antibiotics ranged from 17.30% to 55.18%. Twenty-four carbapenems-resistant PA strains were screened, including 11 MBL-producing strains and 2 KPC-producing strains. Eleven carbapenems-resistant PA strains were found to harbor the blaVIM-2 gene, accounting for 45.83%; 2 carbapenems-resistant PA strains carried the blaKPC-2 gene, accounting for 8.33%. Fourteen carbapenems-resistant PA strains only harbored the PMQR gene acc (6')-Ib-cr, accounting for 58.33%; 3 carbapenems-resistant PA strains (12.50%) harbored the PMQR genes acc (6')-Ib-cr and qnr, including 1 strain with qnr A1 and 2 strains with qnr B4. Ten carbapenems-resistant PA strains carried the MGE gene ISCR1, accounting for 41.67%; 6 carbapenems-resistant PA strains carried the MGE gene ISEcp1, accounting for 25.00%. In addition, 3 carbapenems-resistant PA strains co-harbored the MGE genes ISCR1 and ISEcp1 (accounting for 12.50%), while only 1 carbapenems-resistant PA strain co-harbored the MGE genes class 1 integron and ISEcp1, accounting for 4.17%. Twelve out of the 13 carbapenemase gene positive strains carried one or two PMQR gene (s), which was significantly higher than that of the carbapenemase gene negative strains (with only five strains harboring one PMQR gene, P = 0.023). The 24 carbapenems-resistant PA strains were classified into 6 genotypes by the ERIC-PCR. Thirteen strains (accounting for 54.17%), mainly isolated from pus and blood samples, which were collected from burn department, were in genotype A. Eight out of the 13 strains harbored genes blaVIM-2, acc (6')-Ib-cr, and ISCR1. Five strains (accounting for 20.83%), mainly isolated from sputum samples which were collected from ICU, were in genotype B. Only 2 out of the 5 strains co-harbored the carbapenemase gene, PMQR gene, and MGE gene. There were respectively 2 strains in genotypes C and D, both accounting for 8.33%; the strains in different pattern were isolated from different wards, and they harbored diverse resistance genes. There were respectively 1 strain in genotypes E and F, both accounting for 4.17%.
CONCLUSIONSThe resistance mechanism of PA to carbapenems is mainly mediated by the VIM-2 type MBL in our hospital during 2012, followed by KPC-2 type carbapenemase, and the prevalent genotype is type A. The carbapenemase genes and PMQR genes co-carrying phenomenon exists among these strains of PA, which disseminated by clones.
Anti-Bacterial Agents ; pharmacology ; Bacterial Proteins ; genetics ; Carbapenems ; pharmacology ; DNA, Bacterial ; Drug Resistance, Bacterial ; Humans ; Microbial Sensitivity Tests ; Pseudomonas aeruginosa ; drug effects ; genetics ; isolation & purification ; beta-Lactamases ; genetics
4.Relationship between drug resistance of Pseudomonas aeruginosa isolated from burn wounds and its mobile genetic elements.
Xi-Hao HU ; Xiao-Min XU ; Zu-Huang MI ; You-Fen FAN ; Wei-Yun FENG
Chinese Journal of Burns 2009;25(2):103-105
OBJECTIVETo investigate the relationship between the drug resistance of Pseudomonas aeruginosa (PA) isolated from burn patients wounds and its mobile genetic elements, including plasmid, transposon, and integron.
METHODSThirty-two strains of PA were isolated from wounds exudate of hospitalized burn patients in Ningbo No. 2 Hospital. PA drug sensitivity was determined using GNS-448 drug sensitivity card and K-B tests. The genetic markers of plasmid, transposon and integron including traA, traF, tnpA, tnpU, merA, int I 1 were amplified by PCR and verified by gene sequencing.
RESULTSDrug resistant rate of 32 PA strains to gentamicin, amikacin, cefoperazone/sulbactam, ciprofloxacin was 43.7%, 32.0%, 46.8%, 49.9%, respectively. PA drug resistant rates to piperacillin, cefotaxime, ceftazidime, cefepime, aztreonam, piperacillin/tazobactam, levofloxacin, imipenem and meropenem were all above 56.0%. Seventeen out of 32 PA strains were found to carry transposon and (or) integron genetic markers. One strain was positive for both tnpA and merA, 8 strains were positive for both merA and int I 1, 1 strain was only positive for tnpA, 2 strains were only positive for merA, and 5 strains were positive for int I 1 only.
CONCLUSIONSPA isolated from burn wounds of hospitalized patients in Ningbo No. 2 Hospital is seriously drug resistant, which may relate with its high positive rate of mobile genetic elements of transposon and (or) integron.
Anti-Bacterial Agents ; pharmacology ; Burns ; microbiology ; DNA Transposable Elements ; Drug Resistance, Multiple, Bacterial ; genetics ; Humans ; Integrons ; Microbial Sensitivity Tests ; Plasmids ; Pseudomonas aeruginosa ; drug effects ; genetics ; isolation & purification
5.Analysis of drug resistance and drug resistance genes of imipenem-resistant Pseudomonas aeruginosa strains isolated from burn wards.
Shuhua LIU ; Pinghong LIU ; Xiaodong XUE ; Zhaojun CHEN ; Decui PEI
Chinese Journal of Burns 2014;30(1):25-29
OBJECTIVETo analyze the drug resistance and drug resistance genes of imipenem-resistant Pseudomonas aeruginosa (IRPA) strains isolated from burn wards.
METHODSFrom June 2011 to June 2012, 30 strains of IRPA were isolated from wound excretion, sputum, and venous catheter attachment from burn patients hospitalized in Guangzhou Hospital of Integrated Traditional Chinese and Western Medicine. Drug resistance of the IRPA to 12 antibiotics commonly used in clinic, including ceftazidime, amikacin, ciprofloxacin, etc., was tested with K-B paper agar disk diffusion method. Metallo-β-lactamase (MBL)-producing IRPA was detected by synergism test with imipenem-2-mercaptoethanol. Plasmid of IRPA was extracted, and it was inserted into competent cells, producing transformation strains (TSs). Drug resistance of TSs to imipenem and the MBL-producing TSs were detected. The genes blaIMP, blaVIM, blaOXA-1, blaOXA-2 and blaOXA-10 of IRPA and the TSs were detected by polymerase chain reaction. The drug resistance of IRPA producing MBL or OXA enzyme was summed up.
RESULTSThe sensitive rates of the 30 strains of IRPA to the 12 antibiotics were equal to or above 60.0%. Six strains of MBL-producing IRPA were screened. Twenty-four TSs were resistant to imipenem, and 6 strains among them were MBL-producing positive. Among the 30 strains of IRPA, 6 strains and their corresponding TSs carried blaVIM; 20 strains and their corresponding TSs carried blaOXA-10; no strain was detected to carry blaIMP, blaOXA-1 or blaOXA-2. Two strains and their corresponding TSs were detected carrying both blaVIM and blaOXA-10. No significant difference of drug resistance was observed between strains producing only MBL or OXA enzyme, with the same high resistance to β-lactam antibiotics and some degree of sensitivity to aminoglycoside antibiotics. Strains producing enzymes MBL and OXA were all resistant to the 12 antibiotics.
CONCLUSIONSIRPA strains isolated from burn wards of Guangzhou Hospital of Integrated Traditional Chinese and Western Medicine are multidrug-resistant, and they mainly produce type B and D carbapenemases.
Burns ; microbiology ; Cross Infection ; microbiology ; Drug Resistance, Multiple, Bacterial ; genetics ; Humans ; Imipenem ; Microbial Sensitivity Tests ; Pseudomonas aeruginosa ; drug effects ; genetics ; isolation & purification
6.A Novel Integron Gene Cassette Harboring VIM-38 Metallo-β-lactamase in a Clinical Pseudomonas aeruginosa Isolate.
Fatih Saban BERIŞ ; Esma AKYILDIZ ; Azer ÖZAD DÜZGÜN ; Umut Safiye SAY COŞKUN ; Cemal SANDALLI ; Ayşegül ÇOPUR ÇIÇEK
Annals of Laboratory Medicine 2016;36(6):611-613
No abstract available.
Anti-Bacterial Agents/pharmacology
;
DNA, Bacterial/chemistry/genetics/metabolism
;
Drug Resistance, Bacterial
;
Integrons/*genetics
;
Microbial Sensitivity Tests
;
Pseudomonas aeruginosa/drug effects/*enzymology/isolation & purification
;
Sequence Analysis, DNA
;
beta-Lactamases/*genetics
7.Effect of growth inhibition of the secretory protein SPLUNC1 on Pseudomonas aeruginosa.
Hou-de ZHOU ; Ming-hua WU ; Lei SHI ; Ming ZHOU ; Yi-xin YANG ; Jin ZHAO ; Tan DENG ; Xiao-ling LI ; Shou-rong SHENG ; Gui-yuan LI
Journal of Central South University(Medical Sciences) 2006;31(4):464-469
OBJECTIVE:
To express the recombinant SPLUNC1 protein in HNE1 cells and to study its function of bactericidal and binding to lipopolysaccharide (LPS).
METHODS:
Full length of SPLUNC1 gene was cloned into pCMV-tag4A vector and stably transfected into HNE1 cell lines, the supernatant of cell cultures was collected. After being treated with the supernatant, the Pseudomonas aeruginosa was seeded to LB soft agar plate, and the bacteria clones were counted and analyzed. For in vitro LPS binding assay, LPS was coated to 96-well plates. We incubated in the plate with SPLUNC1 protein, and detected the binded SPLUNC1 protein by ELISA. Incubating the FITC-LPS with the SPLUNC1 stably transfected or control cells, the intracellular intensity of fluorescence was observed under the fluorescence microscope.
RESULTS:
SPLUNC1 inhibited the bacteria clone formation obviously. Although the binding efficiency of LPS and SPLUNC1 in vitro was very low, more FITC-LPS entered into the SPLUNC1 stably transfected cells.
CONCLUSION
SPLUNC1 can inhibit the growth of Pseudomonas aeruginosa and bind LPS, and play an important defensive role in innate immunity of the upper airway.
Cell Line, Tumor
;
Glycoproteins
;
isolation & purification
;
pharmacology
;
Humans
;
Membrane Proteins
;
chemistry
;
Nasopharyngeal Neoplasms
;
genetics
;
pathology
;
Phosphoproteins
;
isolation & purification
;
pharmacology
;
Pseudomonas aeruginosa
;
drug effects
;
Respiratory Mucosa
;
chemistry
;
immunology
;
Respiratory System
;
chemistry
;
immunology
;
Transfection
8.In Vitro Synergistic Effects of Antimicrobial Combinations on Extensively Drug-Resistant Pseudomonas aeruginosa and Acinetobacter baumannii Isolates.
Hyukmin LEE ; Kyung Ho ROH ; Seong Geun HONG ; Hee Bong SHIN ; Seok Hoon JEONG ; Wonkeun SONG ; Young UH ; Dongeun YONG ; Kyungwon LEE
Annals of Laboratory Medicine 2016;36(2):138-144
BACKGROUND: Extensively drug-resistant (XDR) Pseudomonas aeruginosa and Acinetobacter baumannii are a threat to hospitalized patients. We evaluated the effects of antimicrobial combinations on XDR P. aeruginosa and A. baumannii isolates. METHODS: P. aeruginosa and A. baumannii isolates, which were resistant to all antibiotics except colistin (CL), were collected from eight hospitals in Korea. Genes encoding metallo-beta-lactamases (MBLs) and OXA carbapenemases were detected by PCR in eight P. aeruginosa and 30 A. baumannii isolates. In vitro synergy of antimicrobial combinations was tested by using the checkerboard method. RESULTS: Minimum inhibitory concentrations of beta-lactams, aminoglycosides, and fluoroquinolones were very high, while that of CL was low for majority of XDR P. aeruginosa and A. baumannii isolates. Antimicrobial combinations including Imipenem (IPM)-CL, ceftazidime (CAZ)-CL, and rifampin (RIF)-CL exerted only additive/indifferent effects on majority of XDR P. aeruginosa isolates. Proportions of XDR A. baumannii isolates that showed synergistic and additive/indifferent inhibition after treatment with antimicrobial combinations used are as follows: IPM-ampicillin-sulbactam (AMS), 17% and 80% isolates, respectively; IPM-rifampin (RIF), 13% and 81% isolates, respectively; IPM-CL, 13% and 87% isolates, respectively; and RIF-COL, 20% and 73% isolates, respectively. Significant proportion (19%) of XDR P. aeruginosa isolates produced MBLs, and majority (82%) of A. baumannii isolates produced either MBLs or OXA-23. CONCLUSIONS: Our results suggest that combinations of IPM-AMS, IPM-RIF, IPM-CL, and RIF-CL are more useful than individual drugs for treating 13-20% of XDR A. baumannii infections.
Acinetobacter baumannii/*drug effects/genetics/isolation & purification
;
Aminoglycosides/pharmacology
;
Anti-Infective Agents/*pharmacology
;
Bacterial Proteins/genetics/metabolism
;
Drug Resistance, Multiple, Bacterial/*drug effects
;
Drug Synergism
;
Fluoroquinolones/pharmacology
;
Imipenem/pharmacology
;
Microbial Sensitivity Tests
;
Polymerase Chain Reaction
;
Pseudomonas aeruginosa/*drug effects/genetics/isolation & purification
;
beta-Lactamases/genetics/metabolism
9.Susceptibility of Ceftolozane-Tazobactam and Ceftazidime-Avibactam Against a Collection of β-Lactam-Resistant Gram-Negative Bacteria.
Mark D GONZALEZ ; Allison R MCMULLEN ; Meghan A WALLACE ; Matthew P CROTTY ; David J RITCHIE ; Carey Ann D BURNHAM
Annals of Laboratory Medicine 2017;37(2):174-176
No abstract available.
Anti-Bacterial Agents/*pharmacology
;
Azabicyclo Compounds/*pharmacology
;
Bacterial Proteins/genetics
;
Ceftazidime/*pharmacology
;
Cephalosporins/*pharmacology
;
DNA, Bacterial/genetics/metabolism
;
Drug Resistance, Bacterial/*drug effects
;
Gram-Negative Bacteria/drug effects/*isolation & purification
;
Humans
;
Microbial Sensitivity Tests
;
Penicillanic Acid/*analogs & derivatives/pharmacology
;
Pseudomonas aeruginosa/drug effects/isolation & purification
;
Real-Time Polymerase Chain Reaction
10.Correlation Between Virulence Genotype and Fluoroquinolone Resistance in Carbapenem-Resistant Pseudomonas aeruginosa.
Hye Hyun CHO ; Kye Chul KWON ; Semi KIM ; Sun Hoe KOO
Annals of Laboratory Medicine 2014;34(4):286-292
BACKGROUND: Pseudomonas aeruginosa is a clinically important pathogen that causes opportunistic infections and nosocomial outbreaks. Recently, the type III secretion system (TTSS) has been shown to play an important role in the virulence of P. aeruginosa. ExoU, in particular, has the greatest impact on disease severity. We examined the relationship among the TTSS effector genotype (exoS and exoU), fluoroquinolone resistance, and target site mutations in 66 carbapenem-resistant P. aeruginosa strains. METHODS: Sixty-six carbapenem-resistant P. aeruginosa strains were collected from patients in a university hospital in Daejeon, Korea, from January 2008 to May 2012. Minimum inhibitory concentrations (MICs) of fluoroquinolones (ciprofloxacin and levofloxacin) were determined by using the agar dilution method. We used PCR and sequencing to determine the TTSS effector genotype and quinolone resistance-determining regions (QRDRs) of the respective target genes gyrA, gyrB, parC, and parE. RESULTS: A higher proportion of exoU+ strains were fluoroquinolone-resistant than exoS+ strains (93.2%, 41/44 vs. 45.0%, 9/20; P< or =0.0001). Additionally, exoU+ strains were more likely to carry combined mutations than exoS+ strains (97.6%, 40/41 vs. 70%, 7/10; P=0.021), and MIC increased as the number of active mutations increased. CONCLUSIONS: The recent overuse of fluoroquinolone has led to both increased resistance and enhanced virulence of carbapenem-resistant P. aeruginosa. These data indicate a specific relationship among exoU genotype, fluoroquinolone resistance, and resistance-conferring mutations.
ADP Ribose Transferases/genetics
;
Anti-Bacterial Agents/*pharmacology
;
Bacterial Proteins/genetics
;
Bacterial Toxins/genetics
;
Carbapenems/pharmacology
;
Drug Resistance, Bacterial/*drug effects
;
Fluoroquinolones/*pharmacology
;
Genotype
;
Humans
;
Microbial Sensitivity Tests
;
Multilocus Sequence Typing
;
Mutation
;
Pseudomonas aeruginosa/*genetics/isolation & purification/pathogenicity
;
Sputum/microbiology
;
Virulence