1.Comparison of 3 Phenotypic-detection Methods for Identifying Plasmid-mediated AmpC beta-lactamase-producing Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis Strains.
Wookeun LEE ; Bochan JUNG ; Seong Geun HONG ; Wonkeun SONG ; Seok Hoon JEONG ; Kyungwon LEE ; Hyo Sun KWAK
The Korean Journal of Laboratory Medicine 2009;29(5):448-454
BACKGROUND: Plasmid-mediated AmpC beta-lactamases (PABLs) have been detected in the strains of Escherichia coli, Klebsiella spp., Proteus mirabilis, and Salmonella spp. PABLs may be difficult to detect and might interfere in the therapeutic and infection-control processes. Although several PABL-detection methods based on phenotypes have been reported, the Clinical and Laboratory Standards Institute currently does not recommend a routine detection method for PABLs. The aim of this study is to compare the performances of 3 phenotypic PABL detection methods. METHODS: Total 276 non-duplicated clinical isolates of E. coli (N=97), K. pneumoniae (N=136), and P. mirabilis (N=43) were collected from 14 hospitals in Korea between April and June 2007 in a non-consecutive and non-random manner. Multiplex PCR was performed to detect the PABL genes. Further, 3 phenotypic detection methods-cephamycin-Hodge test, Tris-EDTA (TE) disk test, and combination-disk test with 3-aminophenylboronic acid (BA)-were performed using cefoxitin and cefotetan disks. RESULTS: PABL genes were detected by multiplex PCR in 122/276 isolates, including 14/97 E. coli, 105/136 K. pneumoniae, and 3/43 P. mirabilis isolates. The combination-disk test with BA showed higher sensitivity (98.4%), specificity (92.2%), and efficiency (96.3%) than the cephamycin-Hodge (76.2%, 96.1%, and 88.6%, respectively) and the TE-disk (80.3%, 91.6%, and 87.9%, respectively) tests. CONCLUSIONS: The combination-disk test with BA is a simple, efficient, and interpretable test that can be applicable in clinical laboratories involved in the detection of PABLs in clinical isolates of E. coli, K. pneumoniae, and P. mirabilis.
Anti-Bacterial Agents/pharmacology
;
Bacterial Proteins/*analysis
;
Cefotetan/pharmacology
;
Cefoxitin/pharmacology
;
Disk Diffusion Antimicrobial Tests/*methods
;
Escherichia coli/genetics/*isolation & purification
;
Humans
;
Klebsiella pneumoniae/genetics/*isolation & purification
;
Phenotype
;
Plasmids
;
Proteus mirabilis/genetics/*isolation & purification
;
Sensitivity and Specificity
;
beta-Lactamases/*analysis
2.Extended-Spectrum Beta-Lactamase-Producingin Retail Chicken Meat in Singapore.
Eugene Jz LIM ; Si Xian HO ; Delphine Yh CAO ; Quek Choon LAU ; Tse Hsien KOH ; Li Yang HSU
Annals of the Academy of Medicine, Singapore 2016;45(12):557-559
Animals
;
Chickens
;
microbiology
;
Cross-Sectional Studies
;
Enterobacteriaceae
;
genetics
;
isolation & purification
;
Escherichia coli
;
genetics
;
isolation & purification
;
Escherichia coli Proteins
;
genetics
;
Food Microbiology
;
Klebsiella pneumoniae
;
genetics
;
isolation & purification
;
Meat
;
microbiology
;
Multiplex Polymerase Chain Reaction
;
Proteus mirabilis
;
genetics
;
isolation & purification
;
Raw Foods
;
microbiology
;
Singapore
;
beta-Lactamases
;
genetics
3.An Increase in the Clinical Isolation of Acquired AmpC beta-Lactamase-Producing Klebsiella pneumoniae in Korea from 2007 to 2010.
Min Jeong PARK ; Taek Kyung KIM ; Wonkeun SONG ; Jae Seok KIM ; Han Sung KIM ; Jacob LEE
Annals of Laboratory Medicine 2013;33(5):353-355
We investigated the occurrence and genetic basis of AmpC beta-lactamase (AmpC)-mediated antibiotic resistance, by examining Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis isolates at a university hospital, from 2007 to 2010. The ampC genes were detected by multiplex AmpC PCR, and AmpC-positive strains were subjected to DNA sequencing. Extended-spectrum beta-lactamase (ESBL) production was assessed using the ESBL disk test based on the utilization of boronic acid. Carbapenem-resistant isolates were further investigated by the modified Hodge test, a carbapenemase inhibition test and SDS-PAGE experiments. AmpC expression was detected in 1.6% of E. coli (39 DHA-1, 45 CMY-2, and 1 CMY-1) isolates, 7.2% of K. pneumoniae (39 DHA-1, 45 CMY-2, and 1 CMY-1) isolates, and 2.5% of P. mirabilis (8 CMY-2 and 1 CMY-1) isolates. Of the 198 acquired AmpC producers, 58 isolates (29.3%) also produced an ESBL enzyme. Among the acquired AmpC-producing K. pneumoniae isolates, the minimum inhibitory concentration (MIC) MIC50/MIC90 values for cefoxitin, cefotaxime, cefepime, imipenem, and meropenem were >32/>32, 16/>32, 1/16, 0.25/0.5, and <0.125/0.125 microg/mL, respectively. The MIC values for carbapenem were > or =2 microg/mL for 2 K. pneumoniae isolates, both of which carried the blaDHA-1 gene with a loss of OmpK36 expression, but were negative for carbapenemase production. The acquisition of AmpC-mediated resistance in K. pneumoniae isolates increased, as did the proportion of AmpC and ESBL co-producers among the hospital isolates. The accurate identification of isolates producing AmpCs and ESBLs may aid in infection control and will assist physicians in selecting an appropriate antibiotic regimen.
Anti-Bacterial Agents/pharmacology
;
Bacterial Proteins/*genetics
;
DNA, Bacterial/genetics
;
Enterobacteriaceae Infections/*epidemiology/*microbiology
;
Escherichia coli/drug effects/enzymology/isolation & purification
;
Hospitals, University/statistics & numerical data
;
Humans
;
Klebsiella pneumoniae/drug effects/enzymology/isolation & purification/*physiology
;
Microbial Sensitivity Tests
;
Multiplex Polymerase Chain Reaction
;
Proteus mirabilis/drug effects/enzymology/isolation & purification
;
Republic of Korea/epidemiology
;
beta-Lactamases/*genetics