1.Emergence of Klebsiella pneumoniae carbapenemase-producing Proteus mirabilis in Hangzhou, China.
Zi-ke SHENG ; Jun-jie LI ; Guo-ping SHENG ; Ji-fang SHENG ; Lan-juan LI
Chinese Medical Journal 2010;123(18):2568-2570
BACKGROUNDCarbapenems are used to treat severe infections caused by multi-drug-resistant organisms, however, the emergence of carbapenem-resistant bacterial isolates is becoming an increasing therapeutic challenge. Since the first Klebsiella (K.) pneumoniae carbapenemase (KPC)-producing K. pneumoniae was reported in 2001, KPC-producing isolates have been found increasingly, specially in Enterobacteriaceae. The aim of this study was to characterize the mechanisms of a carbapenem-resistant Proteus (P.) mirabilis.
METHODSA carbapenem-resistant P. mirabilis isolate was recovered from pleural drainage fluid of a patient admitted to surgical intensive care unit. Antimicrobial susceptibility testing of the isolate was performed by disk diffusion according to Clinical and Laboratory Standards Institute guidelines, and subsequent minimal inhibitory concentrations were determined with the E-test. Amplification of the bla(KPC) gene generated a positive band and the PCR products were sequenced subsequently. The plasmid of the isolate was extracted and was successfully transformed into Escherichia (E.) coli DH5α.
RESULTSThe P. mirabilis isolate was resistant to all detected antimicrobial agents except tigecycline. KPC-2 was confirmed by DNA sequence analysis. The transformant E. coli was resistant to carbapenems. Further study demonstrated that upstream and downstream regions of bla(KPC-2) were identical to that observed in K. pneumoniae submitted to GenBank from China in 2007.
CONCLUSIONCarbapenem resistance in the P. mirabilis isolate in this study is mainly due to production of KPC-2.
Anti-Bacterial Agents ; pharmacology ; Bacterial Proteins ; metabolism ; China ; Klebsiella pneumoniae ; enzymology ; Proteus mirabilis ; drug effects ; enzymology ; beta-Lactamases ; metabolism
2.Epidemiology of Ciprofloxacin Resistance and Its Relationship to Extended-Spectrum beta-Lactamase Production in Proteus mirabilis Bacteremia.
Kyung Mok SOHN ; Cheol In KANG ; Eun Jeong JOO ; Young Eun HA ; Doo Ryeon CHUNG ; Kyong Ran PECK ; Nam Yong LEE ; Jae Hoon SONG
The Korean Journal of Internal Medicine 2011;26(1):89-93
BACKGROUND/AIMS: We evaluated the clinical features of ciprofloxacin-resistant Proteus mirabilis bacteremia and risk factors for ciprofloxacin resistance. METHODS: From October 2000 to July 2009, 37 patients with clinically significant P. mirabilis bacteremia were identified and data from patients with ciprofloxacin-resistant and ciprofloxacin-susceptible P. mirabilis bacteremia were compared. RESULTS: The most common underlying diseases were neurologic disease (37.8%) and solid tumors (29.7%). The most common site of infection was the urinary tract (35.1%). Ten of the 37 patients (27.0%) were infected with ciprofloxacin-resistant isolates, and univariate analysis revealed a significant relationship between ciprofloxacin-resistant P. mirabilis bacteremia and neurologic disease, recent operation, L-tube insertion, percutaneous tube use, and extended-spectrum beta-lactamase (ESBL) production (all p < 0.05). ESBL was detected in six of 10 (60%) ciprofloxacin-resistant isolates, while only three of 27 (11%) ciprofloxacin-susceptible isolates produced ESBL (p = 0.005). In a logistic regression analysis, ESBL production remained a significant factor associated with ciprofloxacin resistance, after adjusting for other variables. CONCLUSIONS: These data indicate a close association between ciprofloxacin resistance and ESBL-production in P. mirabilis bacteremia. This association is particularly troublesome because the therapeutic options for serious infections caused by ESBL-producing P. mirabilis are severely restricted.
Adult
;
Aged
;
Anti-Infective Agents/*pharmacology
;
Bacteremia/*drug therapy
;
Ciprofloxacin/*pharmacology
;
Drug Resistance, Bacterial
;
Female
;
Humans
;
Male
;
Middle Aged
;
Proteus Infections/*drug therapy
;
Proteus mirabilis/*drug effects/enzymology
;
Risk Factors
;
beta-Lactamases/*biosynthesis
3.Evaluation of the Phoenix Automated Microbiology System for Detecting Extended-Spectrum beta-Lactamase in Escherichia coli, Klebsiella species and Proteus mirabilis.
Kyo Kwan LEE ; Sung Tae KIM ; Ki Suk HONG ; Hee Jin HUH ; Seok Lae CHAE
The Korean Journal of Laboratory Medicine 2008;28(3):185-190
BACKGROUND: The aim of this study was to compare the BD Phoenix (Beckton Dickinson Diagnostic Systems, USA) extended-spectrum beta-lactamase (ESBL) test with the Clinical and Laboratory Standards Institute (CLSI) ESBL phenotypic confirmatory test by disk diffusion (CLSI ESBL test) in Escherichia coli, Klebsiella pneumoniae, Klebsiella oxytoca and Proteus mirabilis. METHODS: We tested 224 clinical isolates of E. coli, K. pneumoniae, K. oxytoca and P. mirabilis during May 2006 to March 2007. These isolates were examined by the Phoenix and the CLSI ESBL tests simultaneously. For the isolates showing discordant results between the two tests, boronic acid disk test was performed to differentiate AmpC beta-lactamase and ESBL. RESULTS: Among the 224 clinical isolates, 75 and 79 isolates were positive for ESBL by CLSI ESBL test and Phoenix test, respectively. Having detected 4 more isolates as ESBL-producers, Phoenix test showed a 98.2% agreement with a 100% sensitivity and 97.3% specificity compared with CLSI ESBL test. Among the four false positive isolates, three were AmpC-positive but ESBL-negative. CONCLUSIONS: The BD Phoenix ESBL test was sensitive and specific, and can be used as a rapid and reliable method to detect ESBL production in E. coli, Klebsiella species, and P. mirabilis.
Automation
;
Bacterial Proteins/classification/*metabolism
;
Disk Diffusion Antimicrobial Tests
;
Escherichia coli/drug effects/*enzymology/isolation & purification
;
Humans
;
Klebsiella/*enzymology
;
Klebsiella oxytoca/drug effects/enzymology/isolation & purification
;
Klebsiella pneumoniae/drug effects/enzymology/isolation & purification
;
*Microbial Sensitivity Tests
;
Proteus mirabilis/drug effects/*enzymology/isolation & purification
;
Reagent Kits, Diagnostic
;
Sensitivity and Specificity
;
beta-Lactamases/classification/*metabolism
4.An Increase in the Clinical Isolation of Acquired AmpC beta-Lactamase-Producing Klebsiella pneumoniae in Korea from 2007 to 2010.
Min Jeong PARK ; Taek Kyung KIM ; Wonkeun SONG ; Jae Seok KIM ; Han Sung KIM ; Jacob LEE
Annals of Laboratory Medicine 2013;33(5):353-355
We investigated the occurrence and genetic basis of AmpC beta-lactamase (AmpC)-mediated antibiotic resistance, by examining Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis isolates at a university hospital, from 2007 to 2010. The ampC genes were detected by multiplex AmpC PCR, and AmpC-positive strains were subjected to DNA sequencing. Extended-spectrum beta-lactamase (ESBL) production was assessed using the ESBL disk test based on the utilization of boronic acid. Carbapenem-resistant isolates were further investigated by the modified Hodge test, a carbapenemase inhibition test and SDS-PAGE experiments. AmpC expression was detected in 1.6% of E. coli (39 DHA-1, 45 CMY-2, and 1 CMY-1) isolates, 7.2% of K. pneumoniae (39 DHA-1, 45 CMY-2, and 1 CMY-1) isolates, and 2.5% of P. mirabilis (8 CMY-2 and 1 CMY-1) isolates. Of the 198 acquired AmpC producers, 58 isolates (29.3%) also produced an ESBL enzyme. Among the acquired AmpC-producing K. pneumoniae isolates, the minimum inhibitory concentration (MIC) MIC50/MIC90 values for cefoxitin, cefotaxime, cefepime, imipenem, and meropenem were >32/>32, 16/>32, 1/16, 0.25/0.5, and <0.125/0.125 microg/mL, respectively. The MIC values for carbapenem were > or =2 microg/mL for 2 K. pneumoniae isolates, both of which carried the blaDHA-1 gene with a loss of OmpK36 expression, but were negative for carbapenemase production. The acquisition of AmpC-mediated resistance in K. pneumoniae isolates increased, as did the proportion of AmpC and ESBL co-producers among the hospital isolates. The accurate identification of isolates producing AmpCs and ESBLs may aid in infection control and will assist physicians in selecting an appropriate antibiotic regimen.
Anti-Bacterial Agents/pharmacology
;
Bacterial Proteins/*genetics
;
DNA, Bacterial/genetics
;
Enterobacteriaceae Infections/*epidemiology/*microbiology
;
Escherichia coli/drug effects/enzymology/isolation & purification
;
Hospitals, University/statistics & numerical data
;
Humans
;
Klebsiella pneumoniae/drug effects/enzymology/isolation & purification/*physiology
;
Microbial Sensitivity Tests
;
Multiplex Polymerase Chain Reaction
;
Proteus mirabilis/drug effects/enzymology/isolation & purification
;
Republic of Korea/epidemiology
;
beta-Lactamases/*genetics