1.The physiology of plant seed aging: a review.
Peilin HAN ; Yueming LI ; Zihao LIU ; Wanli ZHOU ; Fan YANG ; Jinghong WANG ; Xiufeng YAN ; Jixiang LIN
Chinese Journal of Biotechnology 2022;38(1):77-88
Seed quality plays an important role in the agricultural and animal husbandry production, the effective utilization of genetic resources, the conservation of biodiversity and the restoration and reconstruction of plant communities. Seed aging is a common physiological phenomenon during storage. It is a natural irreversible process that occurs and develops along with the extension of seed storage time. It is not only related to the growth, yield and quality of seed and seedling establishment, but also has an important effect on the conservation, utilization and development of plant germplasm resources. The physiological mechanisms of seed aging are complex and diverse. Most studies focus on conventional physiological characterization, while systematic and comprehensive in-depth studies are lacking. Here we review the recent advances in understanding the physiology of seed aging process, including the methods of seed aging, the effect of aging on seed germination, and the physiological and molecular mechanisms of seed aging. The change of multiple physiological parameters, including seed vigor, electrical conductivity, malondialdehyde content and storage material in the seed, antioxidant enzyme activity and mitochondrial structure, were summarized. Moreover, insights into the mechanism of seed aging from the aspects of transcriptome, proteome and aging related gene function were summarized. This study may facilitate the research of seed biology and the conservation and utilization of germplasm resources.
Germination
;
Plants
;
Proteome
;
Seedlings
;
Seeds/genetics*
3.Progress in molecular biology of Jatropha curcas.
Jing YANG ; Yongping LIU ; Yun LIU ; Mingfeng YANG
Chinese Journal of Biotechnology 2012;28(6):671-683
Jatropha curcas L., has been widely recognized as a potential source of biodiesel. In this review, we presented several aspects about the recent progress in molecular biology of J. curcas. First, molecular markers were used to assess its genetic diversity. Second, large-scale genome, transcriptome and proteome analyses were applied for decoding its molecular network. Third, functional characterization of key genes involved in metabolism and regulation of plant development was performed to breed lines with higher quality or higher resistance. Finally, we discussed the limitation of current progress and then proposed the future molecular biology research on J. curcas.
Genetic Variation
;
Genome, Plant
;
genetics
;
Jatropha
;
genetics
;
Proteome
;
genetics
;
Transcriptome
;
genetics
4.Comparative proteome analysis of Bifidobacterium longum NCC2705 grown on fructose and glucose.
Zhongke SUN ; Xin BO ; Xiang HE ; Zheng JIANG ; Fang WANG ; Hongqing ZHAO ; Dawei LIU ; Jing YUAN
Chinese Journal of Biotechnology 2008;24(8):1401-1406
To demonstrate the fructose metabolism pathway in Bifidobacterium Longum NCC2705 and to construct its fermentation model, we explored the comparative proteome cultivating the strain on glucose or fructose, based on a proteomic reference map of B. longum NCC2705 constructed earlier. Then, we used matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectrometry and electro-spray ionization tandem mass spectrometry (ESI-MS/MS) for differently expressed proteins identification. Furthermore, with semi-quantitative RT-PCR we determined the distinctively expressed proteins at the level of transcription. Proteomic comparison of glucose- and fructose-grown cells demonstrated much similarity. On the page of fructose there were all the enzymes and proteins that exist during the process of glucose degradation. We observed a greater variation of more than three-fold for the identified 9 spots representing 5 protein entries by MALDI-TOF MS. The sugar-binding protein specific to fructose (BL0033) and an ABC transporter ATP binding protein (BL0034) showed higher expression level from cells grown on fructose. It was also determined by semi-quantitative RT-PCR subsequently. BL0033 time course and concentration experiments showed that the induction time correlated to higher fructose concentration, and increased expression of BL0033. Fructose was catabolized via the same degradation pathway as glucose at the level of proteomics. BL0033 was induced by fructose. All results suggest that the uptake of fructose into the cell may be conducted by a specific ABC transport system, in which BL0033 and BL0034 as components might have played an important role.
Bifidobacterium
;
chemistry
;
genetics
;
metabolism
;
Culture Media
;
Fermentation
;
Fructose
;
pharmacology
;
Glucose
;
pharmacology
;
Proteome
;
analysis
;
genetics
;
Proteomics
;
methods
5.Progress in omics research of Aspergillus niger.
Yufei SUI ; Liming OUYANG ; Hongzhong LU ; Yingping ZHUANG ; Siliang ZHANG
Chinese Journal of Biotechnology 2016;32(8):1010-1025
Aspergillus niger, as an important industrial fermentation strain, is widely applied in the production of organic acids and industrial enzymes. With the development of diverse omics technologies, the data of genome, transcriptome, proteome and metabolome of A. niger are increasing continuously, which declared the coming era of big data for the research in fermentation process of A. niger. The data analysis from single omics and the comparison of multi-omics, to the integrations of multi-omics based on the genome-scale metabolic network model largely extends the intensive and systematic understanding of the efficient production mechanism of A. niger. It also provides possibilities for the reasonable global optimization of strain performance by genetic modification and process regulation. We reviewed and summarized progress in omics research of A. niger, and proposed the development direction of omics research on this cell factory.
Aspergillus niger
;
genetics
;
Fermentation
;
Genome, Fungal
;
Metabolic Networks and Pathways
;
Metabolome
;
Proteome
;
Transcriptome
6.Moyamoya Biomarkers.
Journal of Korean Neurosurgical Society 2015;57(6):415-421
Moyamoya disease (MMD) is an arteriopathy of the intracranial circulation predominantly affecting the branches of the internal carotid arteries. Heterogeneity in presentation, progression and response to therapy has prompted intense study to improve the diagnosis and prognosis of this disease. Recent progress in the development of moyamoya-related biomarkers has stimulated marked interest in this field. Biomarkers can be defined as biologically derived agents-such as specific molecules or unique patterns on imaging-that can identify the presence of disease or help to predict its course. This article reviews the current categories of biomarkers relevant to MMD-including proteins, cells and genes-along with potential limitations and applications for their use.
Biomarkers*
;
Carotid Artery, Internal
;
Diagnosis
;
Genetics
;
Moyamoya Disease
;
Population Characteristics
;
Prognosis
;
Proteome
;
Stroke
7.Preliminary study on proteome of Yersinia pestis isolated from Yunnan, China.
Peng WANG ; Fei ZHAO ; Ying GUO ; Di XIAO ; Zhi-zhong SONG ; Jian-zhong ZHANG
Chinese Journal of Epidemiology 2011;32(10):1057-1058
Bacterial Proteins
;
analysis
;
China
;
Proteome
;
analysis
;
Proteomics
;
Yersinia pestis
;
chemistry
;
genetics
8.Mechanomics: an emerging field between biology and biomechanics.
Jiawen WANG ; Dongyuan LÜ ; Debin MAO ; Mian LONG
Protein & Cell 2014;5(7):518-531
Cells sense various in vivo mechanical stimuli, which initiate downstream signaling to mechanical forces. While a body of evidences is presented on the impact of limited mechanical regulators in past decades, the mechanisms how biomechanical responses globally affect cell function need to be addressed. Complexity and diversity of in vivo mechanical clues present distinct patterns of shear flow, tensile stretch, or mechanical compression with various parametric combination of its magnitude, duration, or frequency. Thus, it is required to understand, from the viewpoint of mechanobiology, what mechanical features of cells are, why mechanical properties are different among distinct cell types, and how forces are transduced to downstream biochemical signals. Meanwhile, those in vitro isolated mechanical stimuli are usually coupled together in vivo, suggesting that the different factors that are in effect individually could be canceled out or orchestrated with each other. Evidently, omics analysis, a powerful tool in the field of system biology, is advantageous to combine with mechanobiology and then to map the full-set of mechanically sensitive proteins and transcripts encoded by its genome. This new emerging field, namely mechanomics, makes it possible to elucidate the global responses under systematically-varied mechanical stimuli. This review discusses the current advances in the related fields of mechanomics and elaborates how cells sense external forces and activate the biological responses.
Biomechanical Phenomena
;
Gene Expression Regulation
;
Humans
;
Mechanotransduction, Cellular
;
Models, Biological
;
Proteome
;
genetics
;
metabolism
;
Stress, Physiological
;
Transcriptome
9.Proteome and genome integration analysis of obesity.
Qigang ZHAO ; Baixue HAN ; Qian XU ; Tao WANG ; Chen FANG ; Rui LI ; Lei ZHANG ; Yufang PEI
Chinese Medical Journal 2023;136(8):910-921
The prevalence of obesity has increased worldwide in recent decades. Genetic factors are now known to play a substantial role in the predisposition to obesity and may contribute up to 70% of the risk for obesity. Technological advancements during the last decades have allowed the identification of many hundreds of genetic markers associated with obesity. However, the transformation of current genetic variant-obesity associations into biological knowledge has been proven challenging. Genomics and proteomics are complementary fields, as proteomics extends functional analyses. Integrating genomic and proteomic data can help to bridge a gap in knowledge regarding genetic variant-obesity associations and to identify new drug targets for the treatment of obesity. We provide an overview of the published papers on the integrated analysis of proteomic and genomic data in obesity and summarize four mainstream strategies: overlap, colocalization, Mendelian randomization, and proteome-wide association studies. The integrated analyses identified many obesity-associated proteins, such as leptin, follistatin, and adenylate cyclase 3. Despite great progress, integrative studies focusing on obesity are still limited. There is an increased demand for large prospective cohort studies to identify and validate findings, and further apply these findings to the prevention, intervention, and treatment of obesity. In addition, we also discuss several other potential integration methods.
Humans
;
Proteome/metabolism*
;
Proteomics
;
Prospective Studies
;
Obesity/genetics*
;
Genomics
;
Genome-Wide Association Study
10.Proteomic analysis of Bacillus subtilis 168 transforming cis-propenylphosphonic acid to fosfomycin.
Fuhong XIE ; Yapeng CHAO ; Jiaji SHI ; Guoqing ZHANG ; Jing YANG ; Shijun QIAN
Chinese Journal of Biotechnology 2013;29(6):735-750
In this study, we investigated the mechanism of transformation by Bacillus subtilis strain 168 by proteomic analysis. B. subtilis strain 168 was able to stereoselectively transform cis-propenylphosphonic acid (cPPA) to fosfomycin. The maximal fosfomycin production was 816.6 microg/mL after two days cultivation, with a conversion rate of 36.05%. We separated the whole cellular proteins by two-dimensional gel electrophoresis (2-DE) method, and 562 protein spots were detected in the presence of cPPA in the medium, while 527 protein spots were detected in the absence of cPPA. Of them, 98 differentially expressed protein spots were found. Among them, 52 proteins were up-regulated whereas 20 were down-regulated in the presence of cPPA in the medium, and 26 induced at the presence of cPPA. The differentially expressed proteins were analyzed by combined MS and MS/MS methods. Eighty protein spots, including 45 up-regulated proteins, 17 down-regulated proteins, and 18 induced by cPPA were identified. Based on the results of proteomic analysis, we postulated two steps of transformation: in the first step, cPPA was hydrated to 2-hydroxypropylphosphonic acid; in the second step, 2-hydroxypropylphosphonic acid was transformed to fosfomycin via a dehydrogenation reaction.
Bacillus subtilis
;
genetics
;
growth & development
;
metabolism
;
Bacterial Proteins
;
metabolism
;
Biotransformation
;
Fosfomycin
;
metabolism
;
Organophosphorus Compounds
;
metabolism
;
Proteome
;
metabolism
;
Proteomics