1.Expression pattern of MAL in normal epithelial cells, benign tumor, and squamous cell carcinoma of larynx.
Yi JIANG ; Yong CHEN ; Lingyun GAO ; Qing YE ; M A ALONSO
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2009;23(10):451-453
OBJECTIVE:
To compare the expression pattern of the MAL protein in normal and laryngeal carcinoma to derive possible implications of MAL in carcinoma development of larynx.
METHOD:
Use the immunohistochemical technique to analyze the distribution of MAL in normal laryngeal epithelial cells, polyp of vocal cords, laryngeal atypical hyperplasia and laryngeal squamous cell carcinoma.
RESULT:
MAL-like immunohistochemical reactions are strongly expressed in normal laryngeal epithelial cells and its expression is no significantly different in epithelial cells of the polyp of vocal cords. Comparatively, MAL expression is significantly down regulated in laryngeal atypical hyperplasia and laryngeal squamous cell carcinomas (P < 0.05).
CONCLUSION
MAL is normally expressed in laryngeal epithelial cells and its expression changes at early stages of carcinoma development. MAL, therefore, is a potential marker for early diagnosis of laryngeal squamous cell carcinoma.
Carcinoma, Squamous Cell
;
metabolism
;
pathology
;
Case-Control Studies
;
Double-Blind Method
;
Epithelial Cells
;
metabolism
;
Humans
;
Laryngeal Mucosa
;
cytology
;
metabolism
;
Laryngeal Neoplasms
;
metabolism
;
pathology
;
Membrane Transport Proteins
;
metabolism
;
Myelin Proteins
;
metabolism
;
Myelin and Lymphocyte-Associated Proteolipid Proteins
;
Proteolipids
;
metabolism
2.Inflammatory reaction and alterations of pulmonary surfactant in Pseudomonas Aeruginosa pneumonia in immunocompromised rats.
Jieming QU ; Zhuozhe LI ; Lixian HE ; Bo SUN ; Xuehua CHEN
Chinese Medical Journal 2002;115(7):1099-1100
Pulmonary surfactant ( PS ) compromises lipids and surfactant proteins (SP) and lines on the alveolar air-liquid interface. It can reduce surface tension, prevent alveoli from collapse and reduce alveoli edema by disaturated dipalmitoylphosphatidylcholine. It also modulates the pulmonary immunology by SP-A and SP-D. In this study,we established a rat model of immunocompromised host (ICH) with pulmonary infection of Pseudomonas aeruginosa (P. aeruginosa), then studied its pulmonary inflammatory reaction and analyzed the concentration of lipids and SP-A in bronchoalveolar lavage fluid (BALF) during infection.
Animals
;
Bronchoalveolar Lavage Fluid
;
chemistry
;
microbiology
;
Lipids
;
analysis
;
Lung
;
microbiology
;
Male
;
Neutrophils
;
physiology
;
Pneumonia, Bacterial
;
immunology
;
metabolism
;
Proteolipids
;
analysis
;
Pseudomonas Infections
;
immunology
;
metabolism
;
Pulmonary Surfactant-Associated Protein A
;
Pulmonary Surfactant-Associated Proteins
;
Pulmonary Surfactants
;
analysis
;
Rats
;
Rats, Sprague-Dawley
3.Research progress of sarcolipin-a new regulatory protein of sarcoplasmic reticulum Ca2+ ATPase.
Baoping YUAN ; Rong LU ; Yanpin GU ; Yueling LIAO ; Hongchang WEI
Journal of Central South University(Medical Sciences) 2012;37(3):316-319
Sarcolipin (SLN) is a 3 kD membrane protein found in sarcoplasmic reticulum (SR). It has 31 amino acid residues; SLN and phopholamban (PLB) are belong to the same protein family, so they have similar physiological functions. SLN inhibits sarcoplasmic reticulum Ca(2+) ATPase (SERCA) activity and reduces its affinity of Ca(2+), resulting in dysfunction of myocardial contraction and heart failure. However, much remains to be elucidated. SLN independently or in conjunction with PLB affects SERCA activity, imbalancing intracellular calcium homeostasis, and reducing myocardial contractivity; these effects promote the development of heart failure.
Animals
;
Calcium-Binding Proteins
;
physiology
;
Heart Failure
;
physiopathology
;
Humans
;
Muscle Proteins
;
metabolism
;
physiology
;
Myocardial Contraction
;
physiology
;
Proteolipids
;
metabolism
;
physiology
;
Sarcoplasmic Reticulum
;
metabolism
;
Sarcoplasmic Reticulum Calcium-Transporting ATPases
;
antagonists & inhibitors
;
metabolism
4.Comparison of the effect of ambroxol and dexamethasone on the expression of pulmonary surfactant proteins in the fetal rat lungs.
Xue-ming FU ; Jia-lin YU ; Guan-xin LIU ; Bing DENG
Chinese Journal of Pediatrics 2004;42(6):450-453
OBJECTIVETo investigate the effects of maternally administered dexamethasone and ambroxol on the mRNA levels of surfactant proteins (SP-A, SP-B and SP-C) expression in fetal rat lungs at gestational age day 19.
METHODSA 19-day fetal rat lung model was employed. In situ hybridization was used to detect the expression of SP-B mRNA in alveolar type II cell, and the levels of SP-A, SP-B and SP-C mRNAs were detected by semi-quantitative reverse transcriptase-polymerase chain reaction (RT-PCR).
RESULTS(1) SP-B mRNA was detected in situ in alveolar type II cells in fetal rat lung of day 19 gestational age; (2) In the late developmental period of fetal rat lungs, alveolar type II cells were also found around bronchus; (3) Comparing to beta-actin mRNA, the relative values of SP-A, SP-B and SP-C mRNAs were 0.81 +/- 0.26, 0.97 +/- 0.20 and 0.88 +/- 0.11 in fetal lung in the control group. The relative values of mRNAs of SP-A, SP-B and SP-C to beta-actin were 1.04 +/- 0.16, 1.28 +/- 0.29, 1.09 +/- 0.25 in fetal lungs of the ambroxol injected rats, and were 1.08 +/- 0.25, 1.23 +/- 0.35, 1.21 +/- 0.25 in fetal lungs of the dexamethasone injected rats, respectively. Both ambroxol and dexamethasone-treated rats had significantly higher mRNA expression of surfactant proteins compared to the control saline injected animals (P < 0.05). (4) There were no significant differences between ambroxol and dexamethasone in the effects of increasing expressions of surfactant protein mRNAs (P > 0.05).
CONCLUSIONAntepartum administration of both ambroxol and dexamethasone can significantly increase fetal lung SP-A, SP-B and SP-C mRNAs expression.
Ambroxol ; pharmacology ; Animals ; Dexamethasone ; pharmacology ; Expectorants ; pharmacology ; Female ; Gene Expression Regulation, Developmental ; drug effects ; Glucocorticoids ; pharmacology ; Lung ; drug effects ; embryology ; metabolism ; Pregnancy ; Pulmonary Surfactant-Associated Protein A ; genetics ; Pulmonary Surfactant-Associated Protein B ; genetics ; Pulmonary Surfactant-Associated Protein C ; genetics ; Pulmonary Surfactant-Associated Proteins ; genetics ; RNA, Messenger ; genetics ; metabolism ; Rats ; Rats, Wistar ; Reverse Transcriptase Polymerase Chain Reaction
5.Evaluation and management of inherited disorders of surfactant metabolism.
Chinese Medical Journal 2010;123(20):2943-2947
OBJECTIVETo review the pathophysiology, evaluation, management, and outcomes of children with inherited disorders of surfactant metabolism due to mutations in the genes encoding surfactant proteins-B or -C (SFTPB, SFTPC), ATP binding cassette member A3 (ABCA3), and thyroid transcription factor (NKX2.1).
DATA SOURCESReview of the literature, previous work from the author's and collaborators' laboratories, St. Louis Children's Hospital Lung Transplant Database.
STUDY SELECTIONKey articles in the field, author's work.
RESULTSInherited disorders of surfactant metabolism present as acute, severe respiratory dysfunction in the neonatal period (SFTPB, ABCA3, NKX2.1) or as chronic respiratory insufficiency in later infancy and childhood which is of variable onset, severity, and course (SFTPC, ABCA3, NKX2.1). Diagnosis is established with sequencing the relevant genes; lung biopsy with electron microscopy is a useful adjunct. For surfactant protein-B and ABCA3 deficiency presenting with acute neonatal disease, treatment options are limited to lung transplantation or compassionate care. For the more chronic presentations of surfactant protein-C, ABCA3, and NKX2.1 associated disease, the natural history is variable and therefore individualized, supportive care is appropriate,
CONCLUSIONSInherited disorders of surfactant metabolism are rare, but informative diseases that provide unique opportunities for understanding mechanisms of respiratory disease in newborns and children.
ATP-Binding Cassette Transporters ; genetics ; Humans ; Infant, Newborn ; Lung Diseases ; diagnosis ; etiology ; therapy ; Lung Transplantation ; Mutation ; Pulmonary Surfactant-Associated Protein B ; deficiency ; genetics ; Pulmonary Surfactant-Associated Protein C ; genetics ; Pulmonary Surfactants ; metabolism
6.Levels of surfactant proteins A and D in bronchoalveolar lavage fluid of children with pneumonia and their relationships with clinical characteristics.
Li-Li WANG ; Shou-Yan ZHENG ; Luo REN ; Qiu-Yan XIAO ; Xiao-Ru LONG ; Jian LUO ; Qu-Bei LI ; Yu DENG ; Xiao-Hong XIE ; En-Mei LIU
Chinese Journal of Contemporary Pediatrics 2016;18(5):386-390
OBJECTIVETo observe the levels of pulmonary surfactant proteins A and D (SP-A, SP-D) in bronchoalveolar lavage fluid (BALF) of children with pneumonia, and to explore their relationships with clinical characteristics.
METHODSThirty-five children with pneumonia were enrolled in this study. Differential cell counts were obtained by Countstar counting board. The levels of SP-A and SP-D in BALF were detected using ELISA.
RESULTSIn children with pneumonia, SP-D levels were significantly higher than SP-A levels (P<0.001). SP-D levels were negatively correlated with the neutrophil percentage in BALF (r(s)=-0.5255, P<0.01). SP-D levels in BALF in children with increased blood C-reactive protein levels (>8 mg/L) were significantly lower than in those with a normal level of C-reactive protein (P<0.05). Compared with those in children without wheezing, SP-D levels in children with wheezing were significantly lower (P<0.01). There was no correlation between SP-A levels and clinical characteristics.
CONCLUSIONSSP-D levels in BALF are significantly higher than SP-A levels, and have a certain correlation with clinical characteristics in children with pneumonia. As a protective factor, SP-D plays a more important role than SP-A in regulating the immune and inflammatory responses.
Bronchoalveolar Lavage Fluid ; chemistry ; C-Reactive Protein ; analysis ; Child ; Child, Preschool ; Enzyme-Linked Immunosorbent Assay ; Female ; Humans ; Infant ; Male ; Pneumonia ; metabolism ; Pulmonary Surfactant-Associated Protein A ; analysis ; Pulmonary Surfactant-Associated Protein D ; analysis
7.Effect of Dexamethasone on Gene Expression of Surfactant Protein B and Surfactant Protein C.
Ik Soo PARK ; Jang Won SOHN ; Ho Joo YOON ; Dong Ho SHIN ; Sung Soo PARK
Tuberculosis and Respiratory Diseases 2003;54(4):439-448
BACKGROUND: Surfactant protein B(SP-B) and surfactant protein C(SP-C) are important in accelerating surface spreading of surfactant phospholipid. The glucocorticoids accelerate the morphologic differentiation of epithelial cells into type II cells and increase the rate of phosphatidylcholine synthesis. The hydrophobic surfactant protein has been shown to be upregulated by glucocorticoids in vitro, however, its regulation in vivo is not well established. METHODS: The authors investigated the effects of glucocorticoid on the accumulation of mRNA encoding SP-B and SP-C protein content of the lung. Adult rats were given different doses of subcutaneous dexamethasone and sacrificed at 24 hours and 1 week. SP-B and SP-C mRNA were measured by a filter hybridization method. RESULTS: 1) The accumulation of SP-B mRNA at 24 hours after 0.2 mg/kg dexamethasone treatment was increased by 23.7%. 2) The accumulation of SP-B mRNA at 1 week after 2 mg/kg dexamethasone treatment was significantly increased by 96.6%(P<0.001). 3) The accumulation of SP-C mRNA at 24 hours after 0.2 mg/kg dexamethasone treatment was significantly increased by 42.7%(P<0.01). 4) The accumulation of SP-C mRNA at 1 week after 2 mg/kg dexamethasone treatment was significantly increased by 60.0% (P<0.01). CONCLUSION: The authors concluded that dexamethasone treatment in vivo resulted in increased levels of SP-B mRNA and SP-C mRNA. These results suggested that dexamethasone stimulates the synthesis of hydrophobic proteins associated with surfactant.
Adult
;
Animals
;
Dexamethasone*
;
Epithelial Cells
;
Gene Expression*
;
Glucocorticoids
;
Humans
;
Lung
;
Phosphatidylcholines
;
Protein C*
;
Pulmonary Surfactant-Associated Protein C
;
Rats
;
RNA, Messenger
8.Pulmonary surfactant homeostasis associated genetic abnormalities and lung diseases.
Xiaojing JIANG ; Xiuzhu SUN ; Weihua DU ; Haisheng HAO ; Xueming ZHAO ; Dong WANG ; Huabin ZHU ; Yan LIU
Chinese Journal of Medical Genetics 2016;33(4):564-568
Pulmonary surfactant (PS) is synthesized and secreted by alveolar epithelial type II (AEII) cells, which is a complex compound formed by proteins and lipids. Surfactant participates in a range of physiological processes such as reducing the surface tension, keeping the balance of alveolar fluid, maintaining normal alveolar morphology and conducting host defense. Genetic disorders of the surfactant homeostasis genes may result in lack of surfactant or cytotoxicity, and lead to multiple lung diseases in neonates, children and adults, including neonatal respiratory distress syndrome, interstitial pneumonia, pulmonary alveolar proteinosis, and pulmonary fibrosis. This paper has provided a review for the functions and processes of pulmonary surfactant metabolism, as well as the connection between disorders of surfactant homeostasis genes and lung diseases.
ATP-Binding Cassette Transporters
;
genetics
;
DNA-Binding Proteins
;
genetics
;
Homeostasis
;
Humans
;
Lung Diseases
;
genetics
;
Pulmonary Surfactant-Associated Protein C
;
genetics
;
Pulmonary Surfactants
;
metabolism
;
Transcription Factors
9.I73T mutation in the pulmonary surfactant protein C gene associated with pediatric interstitial lung disease: a case study and the review of related literature.
Li HUANG ; Meijuan WANG ; Zhengrong CHEN ; Yongdong YAN ; Xinxing ZHANG ; Yuejie ZHENG ; Huizhong CHEN ; Wei JI
Chinese Journal of Pediatrics 2014;52(11):846-850
OBJECTIVETo report a case of I73T mutation in the pulmonary surfactant protein (SP)-C gene associated with pediatric interstitial lung disease, and study the clinical diagnosis and review related literature, to investigate the role of gene detection in the diagnosis of interstitial lung disease in infants and children.
METHODThe clinical, radiological, and genetic testing information of the case was analyzed and related literature was reviewed.
RESULT(1) An 8-month-old girl was hospitalized because of cough, tachypnea, continuous oxygen therapy and failure to thrive. Physical examination on admission revealed tachypnea, slight cyanosis and the three concave sign was positive, respiratory rate of 50 times/minute, scattered fine crackles could be heard over both lungs, clubbing fingers were found. No other abnormalities were noted. Laboratory test results: pathogenic examination was negative, multiple blood gas analysis suggested hypoxemia. Chest CT showed ground-glass like opacity, diffused tubercle infiltration. The I73T mutation in SP-C gene was identified by SP-related gene sequencing. (2) The review of related literature: Data of 3 infants with I73T mutation in SP-C gene showed that all the 3 cases had tachypnea and dyspnea, chest CT revealed diffuse infiltration or diffuse ground glass pattern in lungs, the major pathology of lungs was nonspecific interstitial pneumonia (NSIP).
CONCLUSIONA case of interstitial lung disease with I73T mutation in SP-C gene was preliminarily diagnosed in an infant. Gene test provides an important tool in the diagnosis of such pediatric interstitial lung disease.
Dyspnea ; Female ; Humans ; Idiopathic Interstitial Pneumonias ; Infant ; Lung Diseases, Interstitial ; diagnosis ; genetics ; Mutation ; Pulmonary Surfactant-Associated Protein C ; genetics ; Pulmonary Surfactants ; Tomography, X-Ray Computed