1.Acute UV Irradiation Increases Heparan Sulfate Proteoglycan Levels in Human Skin.
Ji Yong JUNG ; Jang Hee OH ; Yeon Kyung KIM ; Mi Hee SHIN ; Dayae LEE ; Jin Ho CHUNG
Journal of Korean Medical Science 2012;27(3):300-306
Glycosaminoglycans are important structural components in the skin and exist as various proteoglycan forms, except hyaluronic acid. Heparan sulfate (HS), one of the glycosaminoglycans, is composed of repeated disaccharide units, which are glucuronic acids linked to an N-acetyl-glucosamine or its sulfated forms. To investigate acute ultraviolet (UV)-induced changes of HS and HS proteoglycans (HSPGs), changes in levels of HS and several HSPGs in male human buttock skin were examined by immunohistochemistry and real-time quantitative polymerase chain reaction (qPCR) after 2 minimal erythema doses (MED) of UV irradiation (each n = 4-7). HS staining revealed that 2 MED of UV irradiation increased its expression, and staining for perlecan, syndecan-1, syndecan-4, CD44v3, and CD44 showed that UV irradiation increased their protein levels. However, analysis by real-time qPCR showed that UV irradiation did not change mRNA levels of CD44 and agrin, and decreased perlecan and syndecan-4 mRNA levels, while increased syndecan-1 mRNA level. As HS-synthesizing or -degrading enzymes, exostosin-1 and heparanase mRNA levels were increased, but exostosin-2 was decreased by UV irradiation. UV-induced matrix metalloproteinase-1 expression was confirmed for proper experimental conditions. Acute UV irradiation increases HS and HSPG levels in human skin, but their increase may not be mediated through their transcriptional regulation.
Adult
;
Agrin/genetics
;
Antigens, CD44/genetics
;
Base Sequence
;
DNA Primers/genetics
;
Gene Expression/radiation effects
;
Glucuronidase/genetics
;
Heparan Sulfate Proteoglycans/genetics/*metabolism
;
Heparitin Sulfate/metabolism
;
Humans
;
Male
;
Matrix Metalloproteinase 1/genetics
;
N-Acetylglucosaminyltransferases/genetics
;
RNA, Messenger/genetics/metabolism
;
Skin/*metabolism/*radiation effects
;
Skin Aging/genetics/physiology
;
Syndecan-1/genetics
;
Syndecan-4/genetics
;
Ultraviolet Rays/*adverse effects
;
Young Adult
2.Soluble syndecan-1 at diagnosis and during follow up of multiple myeloma: a single institution study.
Ji Myung KIM ; Jung Ae LEE ; In Sung CHO ; Chun Hwa IHM
Korean Journal of Hematology 2010;45(2):115-119
BACKGROUND: Syndecan-1 is a heparan sulfate proteoglycan expressed on plasma cells, especially myeloma cells, and can exist in serum as soluble syndecan-1 after shedding from the cell surface. Soluble syndecan-1 has been suggested to promote myeloma cell growth and to be an independent prognostic factor for multiple myeloma. We aimed to evaluate the effect of soluble syndecan-1 levels at the time of diagnosis and during therapy on therapeutic response and prognosis for patients with multiple myeloma. METHODS: We analyzed soluble syndecan-1 levels in 28 patients with multiple myeloma and 50 normal controls, and compared its levels with Durie-Salmon stage and other markers of myeloma. In addition, we evaluated the therapeutic response and determined the 3-year survival rates of these patients. RESULTS: We observed that the median soluble syndecan-1 level in myeloma patients was higher than that in the normal controls (P <0.0001), and the soluble syndecan-1 levels in 21 (75%) patients were higher than the cut-off level (162 ng/mL). Soluble syndecan-1 levels correlated with disease stage, percentage of plasma cells in the bone marrow, beta2 microglobulin level, serum M-component concentration, and creatinine level. The baseline levels of soluble syndecan-1 at the time of diagnosis in the patients who responded to chemotherapy were lower than those in the non-responders (P=0.04); however, the baseline level was not a significant predictor of therapeutic response. The 3-year overall survival rate of the patients with high soluble syndecan-1 levels at the time of diagnosis and 6 months after chemotherapy was lower than the corresponding survival rates of the patients with low levels of soluble syndecan-1; however, the overall survival rate was not statistically significant. CONCLUSION: The use of soluble syndecan-1 has limitations in the diagnosis of multiple myeloma. Soluble syndecan-1 levels correlate with known prognostic factors; however, we could not assess the prognostic value of high levels of soluble syndecan-1 at the time of diagnosis and after chemotherapy.
Bone Marrow
;
Creatinine
;
Follow-Up Studies
;
Heparan Sulfate Proteoglycans
;
Humans
;
Multiple Myeloma
;
Plasma Cells
;
Prognosis
;
Survival Rate
;
Syndecan-1
3.Infectivity of Orientia tsutsugamushi to Various Eukaryotic Cells and Their Cellular Invasion Mechanism.
Kyung Soo IHN ; Seung Hoon HAN ; Hang Rae KIM ; Seung Yong SEONG ; Ik Sang KIM ; Myung Sik CHOI
Journal of the Korean Society for Microbiology 1999;34(5):435-443
Orientia tsutsugamushi is obligate intracellular bacterium that grows within the cytoplasm of the eukaryotic host cells. Therefore capability of the attachment, entry into the host cell and intracellular survival should be critical process for oriential infection. In this study we investigated the cellular invasion mechanism of Orientia tsutsugamushi and the role of transmembrane heparan sulfate proteoglycan, which binds diverse components at the cellular microenvironment and is implicated as host cell receptors for a variety of microbial pathogens. First of all Orientia tsutsugamushi can invade a wide range of nonprofessional phagocytic cells including fibroblast, epithelial cells a#nd endothelial cells of various host species, including B and T lymphocytes. Thus, it was postulated that the attachment of O. tsutsugamushi requires the recognition of ubiquitous surface structures of many kinds of host cells. Treatments with heparan sulfate and heparin inhibited the infection of Orientia tsutsugamushi in dose-dependent manner for L cell, mouse fibroblast, whereas other glycosaminoglycans such as chondroitin sulfate had no effect. Collectively, these findings provide strong evidence that initial interaction with heparan sulfate proteoglycan is required for the oriential invasion into host cells.
Animals
;
Cellular Microenvironment
;
Chondroitin Sulfates
;
Cytoplasm
;
Endothelial Cells
;
Epithelial Cells
;
Eukaryotic Cells*
;
Fibroblasts
;
Glycosaminoglycans
;
Heparan Sulfate Proteoglycans
;
Heparin
;
Heparitin Sulfate
;
Mice
;
Orientia tsutsugamushi*
;
Phagocytes
;
T-Lymphocytes
4.Glomerular Basement Membrane Heparan Sulfate Proteoglycan (GBM HSPG).
Journal of the Korean Pediatric Society 1996;39(12):1643-1651
No abstract available.
Glomerular Basement Membrane*
;
Heparan Sulfate Proteoglycans*
;
Heparitin Sulfate*
5.Association of single nucleotide polymorphisms of CSPG2 and HSPG2 genes with intracranial aneurysm in ethnic Han Chinese population.
Xiong ZHU ; Yi SHI ; Fang LU ; Guang-fu HUANG ; Li-juan HU
Chinese Journal of Medical Genetics 2013;30(2):218-221
OBJECTIVETo assess the association between CSPG2 and HSPG2 gene polymorphisms and intracranial aneurysm (IA) in ethnic Han Chinese population.
METHODSA case-control study was carried out. A total of 537 IA patients and 1071 normal controls with matched age and gender were recruited. Peripheral blood samples were obtained from all subjects. Following extraction, target DNA was amplified with PCR and genotyped with a SNaPshot method. The association between 2 tag SNPs (rs251124 and rs3767137) of CSPG2 and HSPG2 genes and IA was assessed.
RESULTSThe genotype frequencies of rs251124 and rs3767137 were both in Hardy-Weinberg equilibrium. No significant difference has been found in the frequencies of rs251124 of CSPG2 between the two groups. Similarly, the frequency of rs3767137 (HSPG2) did not differ between the IA and control groups (P=0.22), albeit with an OR value of greater than 1 (OR=1.12, 95%CI=0.92-1.37). There were no significant difference in genotypic frequencies of the two SNPs between the two groups (P=0.46, 0.53).
CONCLUSIONNo association has been found between polymorphisms of rs251124 and rs3767137 loci of CSPG2 and HSPG2 genes and IA in the selected population.
Adult ; Aged ; China ; ethnology ; Female ; Heparan Sulfate Proteoglycans ; genetics ; Humans ; Intracranial Aneurysm ; genetics ; Male ; Middle Aged ; Polymorphism, Single Nucleotide ; Versicans ; genetics
6.Histopathological Characteristics of Human Coronary Stent Restenosis.
Korean Circulation Journal 2000;30(1):5-15
BACKGROUND AND OBJECTIVES: Neointimal ingrowth rather than stent recoil is thought to be important for coronary in-stent restenosis. However only limited pathologic data are available to adress the mechanisms of in-stent restenosis. With the specific aim of measuring cell replication and of assessing cellularity and extracellular matrix (ECM) composition, we analyzed atherectomized coronary arterial in-stent restenotic specimens. METHODS AND RESULTS: In the present study, we analyzed 29 atherectomized coronary arterial in-stent restenotic tissue samples (14 LAD, 10 RCA, and 5 LCX) retrieved from 25 patients (m/f:18/7: age 59+/-13 yr) at 0.5-23 (mean 5.7) months after deployment of Palmaz-Schatz stent. Histopathological analysis of cellular components and ECM was performed using H & E, modified Movat pentachrome, and immunocytochemical staining. Cellular proliferation rate, as estimated by use of antibodies to Ki-67 nuclear antigen showed low proliferation rate with the range of 0-4%, and no positive cells were found in 62% of cases. Myxoid tissue having ECM enriched with versican and hyaluronan was found in 69% of cases, and decreased over time after stenting. Foci of cell poor area were found in 57% of cases, and could be classified into as: (1) containing collagen-rich ECM and (2) containing a proteoglycan-rich ECM. Versican, biglycan, perlecan, and hyaluronan were identified with varying individual distributions in the proteoglycan rich area. Specimens with foci of cell poor area tended to increase over time after stenting (31% in & 4 mo vs. 81% in > or =4 mo after stenting, p<0.01). alpha-smooth muscle actin staining identified the majority of cells as smooth muscle cells (SMC) and occasional macrophages (< or =12 cells per section) were detected by CD68 antibody. CONCLUSIONS: These data suggest that enhanced ECM accumulation rather than cell proliferation may be important mechanisms for stent restenosis. Angioplasty of stent restenosis may therefore fail due to transient compression of this hygroscopic matrix.
Actins
;
Angioplasty
;
Antibodies
;
Biglycan
;
Cell Proliferation
;
Extracellular Matrix
;
Humans*
;
Hyaluronic Acid
;
Macrophages
;
Myocytes, Smooth Muscle
;
Proteoglycans
;
Stents*
;
Versicans
7.Effects of Eligh Glucose and Advance Gilycosylation Endproducts(AGE) on the Heparan Sulfate Proteoglycan(HSPG) Produced by Cultured Rat Clomerular Epithelial Cells(GEC).
Tae Sun HA ; Hun Sik KIM ; Balakuntalam S KASINATH
Korean Journal of Nephrology 2000;19(1):22-30
HSPG, a component of size-and charge-selective barrier of glomerular basement membrane, is one of important matrix proteins which has been known to be reduced in the kidney of diabetic patients or animals. To examine the effects of glucose and AGE on the HSPG production by cultured GEC, we cultured rat GEC on the AGE- or BSA-coated plate under normal(5mM) and high glucose.(30mM) conditions and measured the change of HSPG production by sandwich-ELISA assay and northern blot analysis at 2 days and one week incubation periods. There was no difference in proliferation between 2 different conditions of culture plate surface. We measured the relative amount of the extracted HSPC and observed significant decreases in high glucose condition at one week incubation, and particularly on the AGE-coated surface as compared to the results of BSA-coated condition, by 22% and 5%, respectively. The expression of mRNA for perlecan promoter was decreased in condition of high glucose and AGE-coated surface by 20Yo at 2 days and 61i at one week. Even in normal glucose condition, the expression of mRNA was reduced by 30Yo at one week if the plate was coated with AGE. In conclusion, both high glucose and AGE have reducing effects on the production of HSPG by GEC in vitro. Their effects seem to be additive, however, the role of AGE is greater than that of glucose, This means that the effort to inhibit AGE formation is more important than short-term glucose control for the prevention of diabetic proteinuria.
Animals
;
Blotting, Northern
;
Diabetic Nephropathies
;
Glomerular Basement Membrane
;
Glucose*
;
Heparan Sulfate Proteoglycans
;
Heparitin Sulfate*
;
Humans
;
Kidney
;
Proteinuria
;
Rats*
;
RNA, Messenger
8.A ROCK Inhibitor Blocks the Inhibitory Effect of Chondroitin Sulfate Proteoglycan on Morphological Changes of Mesenchymal Stromal/Stem Cells into Neuron-Like Cells.
Biomolecules & Therapeutics 2013;21(6):447-453
Chondroitin sulfate proteoglycan (CSPG) inhibits neurite outgrowth of various neuronal cell types, and CSPG-associated inhibition of neurite outgrowth is mediated by the Rho/ROCK pathway. Mesenchymal stromal/stem cells (MSCs) have the potential to differentiate into neuron-like cells under specific conditions and have been shown to differentiate into neuron-like cells by co-treatment with the ROCK inhibitor Y27632 and the hypoxia condition mimicking agent CoCl2. In this study, we addressed the hypothesis that a ROCK inhibitor might be beneficial to regenerate neurons during stem cell therapy by preventing transplanted MSCs from inhibition by CSPG in damaged tissues. Indeed, dose-dependent inhibition by CSPG pretreatment was observed during morphological changes of Wharton's jelly-derived MSCs (WJ-MSCs) induced by Y27632 alone. The formation of neurite-like structures was significantly inhibited when WJ-MSCs were pre-treated with CSPG before induction under Y27632 plus CoCl2 conditions, and pretreatment with a protein kinase C inhibitor reversed such inhibition. However, CSPG treatment resulted in no significant inhibition of the WJ-MSC morphological changes into neuron-like cells after initiating induction by Y27632 plus CoCl2. No marked changes were detected in expression levels of neuronal markers induced by Y27632 plus CoCl2 upon CSPG treatment. CSPG also blocked the morphological changes of human bone marrow-derived MSCs into neuron-like cells under other neuronal induction condition without the ROCK inhibitor, and Y27632 pre-treatment blocked the inhibitory effect of CSPG. These results suggest that a ROCK inhibitor can be efficiently used in stem cell therapy for neuronal induction by avoiding hindrance from CSPG.
Anoxia
;
Chondroitin Sulfate Proteoglycans*
;
Chondroitin Sulfates*
;
Chondroitin*
;
Humans
;
Neurites
;
Neurons
;
Protein Kinase C
;
Stem Cells
9.The Effect of Cyclic AMP on Gene Regulation of Glomerular Basement Membrane Heparan Sulfate Proteoglycan in Rat Glomerular Epithelial Cells.
Cheol Woo KO ; Ja Hoon KOO ; Yong Hoon PARK
Korean Journal of Nephrology 1998;17(1):1-7
It is well known that the glomerular basement membrane heparan sulfate proteoglycan(GBM HSPG) synthesized by glomerular epithelial cell(GEC) has an important role in the permeability of glomerular basement membrane and cyclic AMP(cAMP) is involved in regulation of a wide variety of genes maybe including GBM HSPG gene. The direct effect of cAMP on GBM HSPG gene expression and metabolism was not evaluated as yet. Proteinuria represents an impairment of permselectivity function of glomerular basement membrane regulated by GBM HSPG and could be associated with increased glomerular level of cAMP in nephrotic syndrome of diverse causes. RPD-I(rat GBM HSPG core protein domain-I) detected a >9.5kb transcript of GBM HSPG in RNA of rat GEC. Emp1oying a riboprobe synthesized from RPD-I in RNase protection assay, we examined whether cAMP regulated perlecan expression in the GEC. At l, 6, 24 and 48 hrs of incubation, l mM cAMP caused 43%, 32%, 47% and 40% reduction in mRNA expression of perlecan, respectively. Immunoprecipitation showed a corresponding reduction of 51%, 70% and 68% in the synthesis of 35SO4 labeled GBM HSPG by the GEC fol1owing l2, 24 and 48 hrs of incubation with cAMP. Our results show that decrease in GBM HSPG gene expression and synthesis by cAMP may be of relevance to proteinuric states characterized by activation of these mediators.
Animals
;
Cyclic AMP*
;
Epithelial Cells*
;
Gene Expression
;
Glomerular Basement Membrane*
;
Heparan Sulfate Proteoglycans*
;
Heparitin Sulfate*
;
Immunoprecipitation
;
Metabolism
;
Nephrotic Syndrome
;
Permeability
;
Proteinuria
;
Rats*
;
Ribonucleases
;
RNA
;
RNA, Messenger
10.Effects of High Glucose and Advanced Glycosylation Endproducts(AGE) on the in vitro Permeability Model.
Journal of the Korean Society of Pediatric Nephrology 2006;10(1):8-17
PURPOSE: We describe the changes of rat glomerular epithelial cells when exposed to high levels of glucose and advanced glycosylation endproducts(AGE) in the in vitro diabetic condition. We expect morphological alteration of glomerular epithelial cells and permeability changes experimentally and we may correlate the results with a mechanism of proteinuria in DM. METHODS: We made 0.2 M glucose-6-phsphate solution mixed with PBS(pH 7.4) containing 50 mg/mL BSA and protease inhibitor for preparation of AGE. As control, we used BSA. We manufactured and symbolized five culture dishes as follows; B5 - normal glucose(5 mM) + BSA, B30 - high glucose(30 mM) + BSA, A5 - normal glucose(5 mM) + AGE, A30 - high glucose(30 mM) + AGE, A/B 25 - normal glucose(5 mM) + 25 mM of mannitol(osmotic control). After the incubation period of both two days and seven days, we measured the amount of heparan sulfate proteoglycan(HSPG) in each dish by ELISA and compared them with the B5 dish at 2nd and 7th incubation days. We observed the morphological changes of epithelial cells in each culture dish using scanning electron microscopy(SEM). We tried the permeability assay of glomerular epithelial cells using cellulose semi-permeable membrane measuring the amount of filtered BSA through the apical chamber for 2 hours by sandwich ELISA. RESULTS: On the 2nd incubation day, there was no significant difference in the amount of HSPG between the 5 culture dishes. But on the 7th incubation day, the amount of HSPG increased by 10% compared with the B5 dish on the 2nd day except the A30 dish(P<0.05). Compared with the B5 dish on the 7th day the amount of HSPG in A30 and B30 dish decreased to 77.8% and 95.3% of baseline, respectively(P>0.05). In the osmotic control group (A/B 25) no significant correlation was observed. On the SEM, we could see the separated intercellular junction and fused microvilli of glomerular epithelial cells in the culture dishes where AGE was added. The permeability of BSA increased by 19% only in the A30 dish on the 7th day compared with B5 dish on the 7th day in the permeability assay(P<0.05). CONCLUSION: We observed not only the role of a high level of glucose and AGE in decreasing the production of HSPG of glomerular epithelial cells in vitro, but also their additive effect. However, the role of AGE is greater than that of glucose. These results seems to correlate with the defects in charge selective barrier. Morphological changes of the disruption of intercellular junction and fused microvilli of glomerular epithelial cells seem to correlate with the defects in size-selective barrier. Therefore, we can explain the increased permeability of glomerular epithelial units in the in vitro diabetic condition.
Animals
;
Cellulose
;
Enzyme-Linked Immunosorbent Assay
;
Epithelial Cells
;
Glucose*
;
Glycosylation*
;
Heparan Sulfate Proteoglycans
;
Heparitin Sulfate
;
Intercellular Junctions
;
Membranes
;
Microvilli
;
Permeability*
;
Protease Inhibitors
;
Proteinuria
;
Rats