1.Research progress on the role of TANK-binding kinase 1 in anti-virus innate immune response.
Xue WANG ; Yuchuan ZHANG ; Wei CHEN
Journal of Zhejiang University. Medical sciences 2016;45(5):550-557
The innate immune response against viral infection is mainly relies on type I interferon, the production of which is mediated by TANK-binding kinase 1 (TBK1). It is revealed that the downstream TBK1 is activated by viral nucleic acid sensors RIG-I, cGAS and TLR3. The activity of TBK1 is complexly and precisely regulated by different type of protein modifications, including phosphorylation, ubiquitination and Sumolylation. This article focuses on the role of TBK1 in anti-viral innate immunity and the regulatory mechanism for the TBK1 activation.
Humans
;
Immunity, Innate
;
genetics
;
physiology
;
Interferon Type I
;
Phosphorylation
;
Protein Processing, Post-Translational
;
immunology
;
Protein-Serine-Threonine Kinases
;
chemistry
;
physiology
;
Signal Transduction
;
Ubiquitination
;
Virus Diseases
;
physiopathology
2.Research progress on spindle assembly checkpoint gene BubR1.
Zhao-jun CHEN ; Feng LI ; Jun YANG
Journal of Zhejiang University. Medical sciences 2011;40(4):446-450
BubR1 gene is a homologue of the mitotic checkpoint gene Mad3 in budding yeast which is highly conserved in mammalian. BubR1 protein is a key component mediating spindle assembly checkpoint activation. BubR1 safeguards accurate chromosome segregation during cell division by monitoring kinetochore-microtubule attachments and kinetochore tension. There is a dose-dependent effect between the level of BubR1 expression and the function of spindle assembly checkpoint. BubR1-deficient would lead to mitotic progression with compromised spindle assembly checkpoint because cells become progressively aneuploid. Recently, it has been reported that BubR1 also plays important roles in meiotic, DNA damage response, cancer, infertility, and early aging. This review briefly summarizes the current progresses in studies of BubR1 function.
Cell Cycle Proteins
;
genetics
;
metabolism
;
physiology
;
Chromosome Segregation
;
genetics
;
physiology
;
Kinetochores
;
metabolism
;
physiology
;
Mitosis
;
genetics
;
physiology
;
Protein-Serine-Threonine Kinases
;
genetics
;
metabolism
;
physiology
;
Saccharomycetales
;
genetics
;
physiology
;
Spindle Apparatus
;
genetics
;
metabolism
;
physiology
3.Heat shock protein 90-mediated inhibition of hepatitis B virus replication in hepatic cells.
Hong-ping HUANG ; Yuan YU ; Shen-pei LIU ; Chun-yan ZHANG ; Yan CHEN ; Yan YANG
Chinese Journal of Hepatology 2012;20(10):761-765
OBJECTIVETo evaluate the effect of heat shock protein 90 (HSP90) on hepatitis B virus (HBV) replication in hepatocytes and to investigate the related molecular mechanism.
METHODSA eukaryotic plasmid expressing human HSP90 was constructed (designated as HA-HSP90). HepG2 cells were co-transfected with HA-HSP90 and the HBV replicative plasmid HBV1.3. Expression of the exogenous HSP90 was assessed by Western blotting. Expression of the HBV surface antigen (HBsAg) was determined by enzyme-linked immunosorbent assay, and HBV replicative intermediates were detected by Southern blotting. Small interfering (si)RNAs were designed against HSP90 and TBK1 and transfected into the HepG2 cells to further assess the effects of HSP90 and its underlying mechanism. HSP90-mediated effects on the expression of interleukins IL-1b and IL-6 and the interferon response gene IFIT1 were assessed by quantitating mRNA levels with real time RT-PCR.
RESULTSThe HA-HSP90 plasmid successfully expressed exogenous HSP90 protein in HepG2 cells. The exogenous HSP90 was able to inhibit HBV replication and HBsAg expression. IFIT1 expression was up-regulated after HA-HSP90 transfection, but neither IL-1b nor IL-6 were affected. The siRNA-mediated TBK1 down-regulation had no effect on the HSP90-inhibited HBV replication.
CONCLUSIONHSP90 can inhibit HBV replication and TBK1 is not involved in this process.
HSP90 Heat-Shock Proteins ; genetics ; Hep G2 Cells ; Hepatitis B e Antigens ; metabolism ; Hepatitis B virus ; physiology ; Humans ; Protein-Serine-Threonine Kinases ; genetics ; Transfection ; Virus Replication
4.Pim-1: A serine/threonine kinase with a role in cell survival, proliferation, differentiation and tumorigenesis.
Zeping WANG ; Nandini BHATTACHARYA ; Matt WEAVER ; Kate PETERSEN ; Maria MEYER ; Leslie GAPTER ; Nancy S MAGNUSON
Journal of Veterinary Science 2001;2(3):167-179
Pim-1 belongs to a family of serine/threonine protein kinases that are highly conserved through evolution in multicellular organisms. Originally identified from moloney murine leukemia virus (MuLV)-induced T-cell lymphomas in mice, Pim-1 kinase is involved in the control of cell growth, differentiation and apoptosis. Expression of Pim-1 kinase can be stimulated by a variety of growth factors and regulated at four different levels: transcriptional, post-transcriptional, translational and post-translational. Several signal transduction pathways may be associated with the regulation of Pim-1's expression; accumulating data support that the expression of Pim-1 protein is mediated through activation of JAK/STATs. Recent studies of Pim family kinases indicate that Pim-1 kinase plays important roles outside of the hematopoietic system as well.
Animals
;
Apoptosis/*physiology
;
Cell Differentiation/physiology
;
Cell Division/*physiology
;
*Cell Transformation, Neoplastic
;
Gene Expression Regulation, Enzymologic
;
Humans
;
Lymphoma/etiology
;
Mice
;
Protein-Serine-Threonine Kinases/genetics/*physiology
;
Proto-Oncogene Proteins/genetics/*physiology
;
Proto-Oncogene Proteins c-pim-1
;
Signal Transduction
5.Advance of study on effects of Chfr gene of mitosis prophase checkpoint--review.
Journal of Experimental Hematology 2004;12(6):870-874
Chfr, a mitotic stress checkpoint gene, regulates a prophase delay in cells exposed to agents that disrupt microtubules, such as nocodazole and taxol. Chfr expression was ubiquitious in normal human tissues. It is very high conserved between human and mice. Preliminary sutdies indicated that Chfr expression was cell cycle regulated and it dependent on its ubiqitin ligase activity. The direct target of the Chfr pathway was Polo-like kinase 1 (Plk1). Ubiquitination of Plk1 by Chfr delayed the activation of the Cdc25C phosphatase and the inactivation of the Weel kinase, leading to a delay in Cdc 2 activation. The chfr gene was inactivated owing to lack of expression or by mutation in some human cancer cell lines examined. Normal primary cells and tumour cell lines that express wild-type chfr exhibited delayed entry into metaphase when centrosome separation was inhibited by mitotic stress. In contrast, the tumour cell lines that had lost chfr function entered metaphase without delay. Ecotopic expression of wild-type chfr restored the cell cycle delay and increased the ability of the cells to survive mitotic stress. Thus, chfr defines a checkpoint that delays entry into metaphase in response to mitotic stress. The progress of research on structure of Chfr gene and effects of Chfr protein was reviewed.
Cell Cycle
;
genetics
;
physiology
;
Cell Cycle Proteins
;
genetics
;
metabolism
;
physiology
;
Humans
;
Metaphase
;
genetics
;
physiology
;
Mitosis
;
genetics
;
physiology
;
Neoplasm Proteins
;
genetics
;
physiology
;
Neoplasms
;
genetics
;
metabolism
;
pathology
;
Poly-ADP-Ribose Binding Proteins
;
Prophase
;
genetics
;
physiology
;
Protein-Serine-Threonine Kinases
;
metabolism
;
Protein-Tyrosine Kinases
;
metabolism
;
Proto-Oncogene Proteins
;
metabolism
;
Ubiquitin-Protein Ligases
6.Serum response factor participates in RhoA-induced endothelial cell F-actin rearrangements.
Ya-Ling HAN ; Hai-Bo YU ; Cheng-Hui YAN ; Zi-Min MENG ; Xiao-Lin ZHANG ; Jian KANG ; Shao-Hua LI ; Shi-Wen WANG
Acta Physiologica Sinica 2005;57(3):295-302
RhoA is one of the main members of RhoGTPase family involved in cell morphology, smooth muscle contraction, cytoskeletal microfilaments and stress fiber formation. It has been demonstrated that RhoA modulates endothelial cell permeability by its effect on F-actin rearrangement, but the molecular mechanism of rearrangement of actin cytoskeleton remains unclear. Recent studies prove that RhoA/Rho kinase regulates smooth muscle specific actin dynamics by activating serum response factor (SRF)-dependent transcription. To further investigate the molecular mechanism of the rearrangement of vascular endothelial cell actin cytoskeleton, we explored the relationship between the activation of SRF and F-actin rearrangement induced by RhoA in human umbilical vein endothelial cells (HUVECs). HUVECs were infected with the constitutively active forms of RhoA (Q63LRhoA) or the dominant negative forms of RhoA(T19NRhoA) using retrovirus vector pLNCX-Q63LRhoA or pLNCX-T19NRhoA, the positive clone was obtained by G418 selection. The expression and distribution of SRF in normal and infected cells were evaluated by immunohistochemistry and Western blot in complete medium and in serum-free medium. The effect of F-actin polymerization was detected by Rhodamine-Phalloidine staining. Infection of PLNCX-Q63LRhoA induced F-actin rearrangement and stress fiber formation in HUVECs, as well as enhanced the expression of SRF in the nuclei. In contrast, the cells infected with T19NRhoA showed no distinct changes. With serum deprivation, the expression of SRF increased obviously in both normal and infected HUVECs, but the subcellular localization of SRF was evidently different. In HUVECs, the localization of SRF was in the nuclei after 3 d with serum deprivation, but it was redistributed outside the nuclei after 5 d with serum deprivation. In cells infected with Q63LRhoA, the immunolocalization of SRF was always in the nuclei compared with HUVECs infected with T19NRhoA, which was almost always localized in the cytoplasm. In HUVECs, the rearrangement of F-actin and formation of stress fiber increased after 3 d with serum deprivation, but appeared decreased and unpolymerized after 5 d with serum deprivation. The polymerization of F-actin and the formation of stress fiber in HUVECs infected with Q63LRhoA kept during the period of serum-free culture, whereas the rearrangement of F-actin in cells infected with T19NRhoA was not found. These results suggest that RhoA influences endothelial F-actin rearrangement in part by regulating the expression and subcellular localization of SRF.
Actins
;
biosynthesis
;
genetics
;
Cytoskeleton
;
metabolism
;
Endothelium, Vascular
;
cytology
;
metabolism
;
Humans
;
Intracellular Signaling Peptides and Proteins
;
Protein-Serine-Threonine Kinases
;
metabolism
;
Serum Response Factor
;
biosynthesis
;
genetics
;
Umbilical Veins
;
cytology
;
rho-Associated Kinases
;
rhoA GTP-Binding Protein
;
physiology
7.High glucose promotes the CTGF expression in human mesangial cells via serum and glucocorticoid-induced kinase 1 pathway.
Quansheng, WANG ; Ali, ZHANG ; Renkang, LI ; Jianguo, LIU ; Jiwen, XIE ; Anguo, DENG ; Yuxi, FENG ; Zhonghua, ZHU
Journal of Huazhong University of Science and Technology (Medical Sciences) 2008;28(5):508-12
The role of serum and glucocorticoid-induced kinase 1 (SGK1) pathway in the connective tissue growth factor (CTGF) expression was investigated in cultured human mesangial cells (HMCs) under high glucose. By using RT-PCR and Western blot, the effect of SGK1 on the CTGF expression in HMCs under high glucose was examined. Overexpression of active SGK1 in HMCs transfected with pIRES2-EGFP-S422D hSGK1 (SD) could increase the expression of phosphorylated SGK1 and CTGF as compared with HMCs groups transfected with pIRES2-EGFP (FP) under high glucose or normal glucose. Overexpression of inactive SGK1 in HMCs transfected with pIRES2-EGFP-K127N hSGK1 (KN) could decrease phosphorylated SGK1 and CTGF expression as compared with HMCs groups transfected with FP under high glucose. In conclusion, these results suggest that high glucose-induced CTGF expression is mediated through the active SGK1 in HMCs.
Cells, Cultured
;
Connective Tissue Growth Factor/genetics
;
Connective Tissue Growth Factor/*metabolism
;
Glucose/*pharmacology
;
Immediate-Early Proteins/metabolism
;
Immediate-Early Proteins/*physiology
;
Mesangial Cells/cytology
;
Mesangial Cells/*metabolism
;
Protein-Serine-Threonine Kinases/metabolism
;
Protein-Serine-Threonine Kinases/*physiology
;
Signal Transduction/drug effects
8.Influence of HMGB1/MAPK/m-TOR signaling pathway on cell autophagy and chemotherapy resistance in K562 cells.
Liying LIU ; Fei GAO ; Yanqiong YE ; Zhiheng CHEN ; Yunpeng DAI ; Ping ZHAO ; Guotao GUAN ; Mingyi ZHAO
Journal of Central South University(Medical Sciences) 2016;41(10):1016-1023
To observe the effect of high-mobility group box 1 (HMGB1) on autophagy and chemotherapy resistance in human leukemiacell line (K562) cells, and to explore the underlying mechanisms.
Methods: The K562 cells were cultured in vitro and divided into 6 groups: a chemotherapeutic group, a chemotherapeutic control group, a HMGB1 preconditioning group, a HMGB1 preconditioning control group, a HMGB1 siRNA group and a siRNA control group. The chemotherapeutic group was further divided into a vincristine (VCR) group, an etoposide (VP-16) group, a cytosine arabinoside (Ara-C) group, a adriamycin (ADM) group and a arsenic trioxide (As2O3) group. The cell activity was evaluated by cell counting kit-8. The protein levels of HMGB1, microtubule-associate protein1light chain3 (LC3), AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (m-TOR) were determined by Western blotting. The level of serum HMGB1 was evaluated by enzyme-linked immunosorbent assay (ELISA). The autophagy was examined by monodansylcadaverine staining and observed under transmission electron microscopy.
Results: Compared with the control group, the cell activity was significantly decreased and the level of serum HMGB1 was significantly increased in the chemotherapeutic (VCR, VP-16, Ara-C, ADM and As2O3) groups (all P<0.05). Compared with the control group, the cell activity and the level of serum HMGB1 were significantly increased in the HMGB1 preconditioning group (both P<0.05). Compared with the siRNA control group, the cell activity and the level of serum HMGB1 were significantly decreased in the HMGB1 siRNA group (both P<0.05). Compared with the control group, the expression of LC3-II and the formation of autophagic bodies were increased in the HMGB1 preconditioning group (both P<0.05), the p-AMPK expression was increased and p-mTOR expression was decreased (both P<0.05).
Conclusion: HMGB1 can increase the autophagy and promote chemotherapy resistance through the pathway of AMPK/m-TOR in K562 cells.
AMP-Activated Protein Kinases
;
genetics
;
physiology
;
Arsenic Trioxide
;
Arsenicals
;
Autophagy
;
genetics
;
Cytarabine
;
Doxorubicin
;
Drug Resistance, Neoplasm
;
genetics
;
physiology
;
Etoposide
;
HMGB1 Protein
;
genetics
;
physiology
;
Humans
;
K562 Cells
;
physiology
;
Microtubule-Associated Proteins
;
Oxides
;
RNA, Small Interfering
;
Signal Transduction
;
TOR Serine-Threonine Kinases
;
genetics
;
physiology
;
Vincristine
9.Effects of large tumor suppressor homolog 2 gene overexpression on the proliferation and apoptosis of oral squamous cell carcinoma.
Zeng-Wen YUE ; Shu-Bin WANG ; Jin-Zhong LIU
West China Journal of Stomatology 2018;36(6):609-612
OBJECTIVE:
To investigate the effect of large tumor suppressor homolog 2 (LATS2) gene overexpression on the proliferation and apoptosis of oral squamous cell carcinoma (OSCC).
METHODS:
Lentivirous particles were transferred into SCC-25 cell to upregulate LATS2 gene expression. Cell proliferation was detected by CCK-8 assay. Apoptosis was detected through flow cytometry. The expression changes of Bax, Bcl-2, and LATS2 were analyzed by Western blot.
RESULTS:
Gene transfection increased LATS2 expression. Compared with the control group and pEGFP-control group, SCC-25 cell proliferation in the pGFP-LATS2 group was inhibited, whereas the apoptosis ratio increased (P<0.05). Bcl-2 expression decreased, and Bax expression increased.
CONCLUSIONS
Overexpression of LATS2 could inhibit SCC-25 cell proliferation and induce apoptosis.
Apoptosis
;
Carcinoma, Squamous Cell
;
genetics
;
metabolism
;
Cell Line, Tumor
;
Cell Proliferation
;
Gene Expression Regulation, Neoplastic
;
Humans
;
Mouth Neoplasms
;
genetics
;
metabolism
;
Protein-Serine-Threonine Kinases
;
physiology
;
Tumor Suppressor Proteins
;
physiology
10.Effect on retardation of G2/M phase in esophageal carcinoma cells transfected with CHK1 and CHK2 shRNA after irradiation.
Yu-xiang WANG ; Shu-chai ZHU ; Wei FENG ; Juan LI ; Jing-wei SU ; Ren LI
Chinese Journal of Oncology 2006;28(8):572-577
OBJECTIVETo observe the effect of RNA interference on CHK1 and CHK2 expression and change of G2/M phase arrest in esophageal carcinoma cells after irradiation.
METHODSFour sequences short hairhip RNA (shRNA) of each CHK1 and CHK2 genes were constructed and connected with vector of pENTR/U6 plasmid, respectively, and then transfected into Eca109 cells with lipofectamine 2000 reagent. Protein and mRNA expression of CHK1 and CHK2 genes were detected with Western blotting and RT-PCR, respectively. Cell cycling was measured by flow cytometry after 5 Gy irradiation. Cell survival rate after 5 Gy irradiation was evaluated by clonegenetic assay.
RESULTSFour shRNA vector each of CHK1 and CHK2 genes were successfully constructed and transfected into Ecal09 cells, respectively. Protein expression of CHK1 and CHK2 were obviously decreased. Their mRNA expressions were also decreased after transfected with shRNA of CHK1 and CHK2. Arrest of G2/M stage in Eca109 cells were obviously decreased only in cells transfected with CHK1 shRNA but not with CHK2 shRNA at 12 h after 5 Gy irradiation. In first progeny Eca109 cells transfected with CHK1 and CHK2 shRNA, expression of CHK1 and CHK2 protein was also decreased. The level of phosphorylated CHK2-T68 expression was decreased at 1 h after 5 Gy irradiation, and at 72 h only transfected with CHK2 shRNA but not with CHK1 shRNA. Phosphorylation level of CHK1-S345 was not increased after transfected with CHK1 or CHK2 shRNA, but arrest of G2/M stage still remained at 12 h after 5 Gy irradiation and at 72 h accordingly. The cell survival rate was decreased in Eca109 cells transfected with CHK1 or CHK2 shRNA after 5 Gy irradiation.
CONCLUSIONAfter transfected with shRNA of CHK1 or CHK2, their expressions of mRNA and protein in Ecal09 cells are markedly inhibited and this inhibition effect can be observed in their first progeny cells and at least hold for 3 days. Arrest of G2/M phase can be reduced after irradiation when teansfected with shRNA of CHK1 and the radiosensitivity of Ec109 cells can be increased.
Blotting, Western ; Cell Division ; genetics ; physiology ; radiation effects ; Cell Line, Tumor ; Cell Survival ; genetics ; physiology ; radiation effects ; Checkpoint Kinase 1 ; Checkpoint Kinase 2 ; Esophageal Neoplasms ; genetics ; pathology ; physiopathology ; G2 Phase ; genetics ; physiology ; radiation effects ; Gamma Rays ; Genetic Vectors ; Humans ; Protein Kinases ; genetics ; metabolism ; Protein-Serine-Threonine Kinases ; genetics ; metabolism ; RNA Interference ; RNA, Small Interfering ; genetics ; Reverse Transcriptase Polymerase Chain Reaction ; Transfection