1.Advance of the study on LRRK2 gene in Parkinson's disease.
Chinese Journal of Medical Genetics 2008;25(6):657-659
The leucine-rich repeat kinase2 (LRRK2) has been identified to be the gene causing autosomal dominant inherited Parkinson's disease(PD)8. The clinical features of this type of PD are similar to those of idiopathic PD, but the pathological changes are diverse. The mutation types and frequencies of the LRRK2 distribute unevenly in different populations. LRRK2 is a large complex protein with multiple functions and expresses widely in human body. Sequence alignment shows that LRRK2 might be a multiple function kinase for substrate phosphorylation and might also act as a scaffolding protein. Further study on the physiological function and pathogenic mechanism of LRRK2 will help to find out the possible pathogenesis and new treatment for PD.
Animals
;
Continental Population Groups
;
genetics
;
Humans
;
Leucine-Rich Repeat Serine-Threonine Protein Kinase-2
;
Mutation
;
Parkinson Disease
;
genetics
;
pathology
;
Protein-Serine-Threonine Kinases
;
chemistry
;
genetics
;
metabolism
;
Sequence Alignment
2.CLE42 binding induces PXL2 interaction with SERK2.
Shulin MOU ; Xiaoxiao ZHANG ; Zhifu HAN ; Jiawei WANG ; Xinqi GONG ; Jijie CHAI
Protein & Cell 2017;8(8):612-617
Arabidopsis
;
chemistry
;
genetics
;
metabolism
;
Arabidopsis Proteins
;
chemistry
;
genetics
;
metabolism
;
Crystallography, X-Ray
;
Intercellular Signaling Peptides and Proteins
;
chemistry
;
genetics
;
metabolism
;
Protein Conformation
;
Protein-Serine-Threonine Kinases
;
chemistry
;
genetics
;
metabolism
3.Research progress on the role of TANK-binding kinase 1 in anti-virus innate immune response.
Xue WANG ; Yuchuan ZHANG ; Wei CHEN
Journal of Zhejiang University. Medical sciences 2016;45(5):550-557
The innate immune response against viral infection is mainly relies on type I interferon, the production of which is mediated by TANK-binding kinase 1 (TBK1). It is revealed that the downstream TBK1 is activated by viral nucleic acid sensors RIG-I, cGAS and TLR3. The activity of TBK1 is complexly and precisely regulated by different type of protein modifications, including phosphorylation, ubiquitination and Sumolylation. This article focuses on the role of TBK1 in anti-viral innate immunity and the regulatory mechanism for the TBK1 activation.
Humans
;
Immunity, Innate
;
genetics
;
physiology
;
Interferon Type I
;
Phosphorylation
;
Protein Processing, Post-Translational
;
immunology
;
Protein-Serine-Threonine Kinases
;
chemistry
;
physiology
;
Signal Transduction
;
Ubiquitination
;
Virus Diseases
;
physiopathology
4.Identification and functional analysis of phosphorylation residues of the Arabidopsis BOTRYTIS-INDUCED KINASE1.
Jinhua XU ; Xiaochao WEI ; Limin YAN ; Dan LIU ; Yuanyuan MA ; Yu GUO ; Chune PENG ; Honggang ZHOU ; Cheng YANG ; Zhiyong LOU ; Wenqing SHUI
Protein & Cell 2013;4(10):771-781
Arabidopsis BOTRYTIS-INDUCED KINASE1 (BIK1) is a receptor-like cytoplasmic kinase acting early in multiple signaling pathways important for plant growth and innate immunity. It is known to form a signaling complex with a cell-surface receptor FLS2 and a co-receptor kinase BAK1 to transduce signals upon perception of pathogen-associated molecular patterns (PAMPs). Although site-specific phosphorylation is speculated to mediate the activation and function of BIK1, few studies have been devoted to complete profiling of BIK1 phosphorylation residues. Here, we identified nineteen in vitro autophosphorylation sites of BIK1 including three phosphotyrosine sites, thereby proving BIK1 is a dual-specificity kinase for the first time. The kinase activity of BIK1 substitution mutants were explicitly assessed using quantitative mass spectrometry (MS). Thr-237, Thr-242 and Tyr-250 were found to most significantly affect BIK1 activity in autophosphorylation and phosphorylation of BAK1 in vitro. A structural model of BIK1 was built to further illustrate the molecular functions of specific phosphorylation residues. We also mapped new sites of FLS2 phosphorylation by BIK1, which are different from those by BAK1. These in vitro results could provide new hypotheses for more in-depth in vivo studies leading to deeper understanding of how phosphorylation contributes to BIK1 activation and mediates downstream signaling specificity.
Amino Acids
;
chemistry
;
Arabidopsis
;
enzymology
;
Arabidopsis Proteins
;
chemistry
;
genetics
;
isolation & purification
;
Gene Expression Regulation, Plant
;
Immunity, Innate
;
Mutation
;
Phosphorylation
;
Protein-Serine-Threonine Kinases
;
chemistry
;
genetics
;
isolation & purification
;
Signal Transduction
;
Threonine
;
genetics
5.Peutz-Jeghers Syndrome with Adenomatous Change in a Fifteen-month-old Boy.
Kun Song LEE ; Seung Ho LEE ; Na Hye MYONG
The Korean Journal of Gastroenterology 2015;66(2):106-110
Peutz-Jeghers syndrome (PJS) is a very rare genetic disorder. PJS carries a high risk of developing gastrointestinal (GI) cancer or non-GI cancer with advancing years. However, major symptoms of PJS in childhood are obstruction, intussusception, and bleeding from hamartomatous intestinal polyps which in majority of cases are not related to cancer. Generally, first GI symptom develops by 20 years in one half of children diagnosed with PJS. Children under two years of age who had PJS polyp-related intestinal symptoms are rare, and there have been no published report on intestinal carcinoma development, adenomatous change or dysplasia of polyps in Korean children with PJS. Recently, the authors have experienced a case PJS with adenomatous polyp change in a 15-month-old boy who had STK11 gene mutation. Therefore, early evaluation could be necessary and considered in children with PJS.
Adenoma/*diagnosis/pathology
;
Base Sequence
;
Colonoscopy
;
Heterozygote
;
Humans
;
Infant
;
Male
;
Peutz-Jeghers Syndrome/*diagnosis/genetics/pathology
;
Polymorphism, Single Nucleotide
;
Polyps/pathology
;
Protein-Serine-Threonine Kinases/chemistry/genetics
6.Gold compound auranofin inhibits I kappaB kinase (IKK) by modifying Cys-179 of IKK beta subunit.
Kye Im JEON ; Mi Sun BYUN ; Dae Myung JUE
Experimental & Molecular Medicine 2003;35(2):61-66
Antirheumatic gold compounds have been shown to inhibit NF-kB activation by blocking IkB kinase (IKK) activity. To examine the possible inhibitory mechanism of gold compounds, we expressed wild type and mutant forms of IKk alpha and beta subunits in COS-7 cells and determined the effect of gold on the activity of these enzymes both in vivo and in vitro. Substitution of Cys-179 of IKK beta with alanine (C179A) rendered the enzyme to become resistant to inhibition by a gold compound auranofin, however, similar protective effect was not observed with an equivalent level of IKK alpha (C178A) mutant expressed in the cells. Auranofin inhibited constitutively active IKK alpha and beta and variants; IKK alpha (S176E, S180E) or IKK beta (S177E, S181E), suggesting that gold directly cause inhibition of activated enzyme. The different inhibitory effect of auranofin on IKK alpha (C178A) and IKK beta (C179A) mutants indicates that gold could inhibit the two subunits of IKK in a different mode, and the inhibition of NF- kB and IKK activation induced by inflammatory signals in gold-treated cells appears through its interaction with Cys-179 of IKK beta.
Amino Acid Substitution
;
Animals
;
Auranofin/*pharmacology
;
COS Cells
;
Cysteine/genetics/*metabolism
;
Enzyme Activation/drug effects
;
Gold Compounds/*pharmacology
;
Protein Subunits/chemistry
;
Protein-Serine-Threonine Kinases/*antagonists & inhibitors/chemistry/genetics/*metabolism
;
Sulfhydryl Compounds/pharmacology
7.Mutation analysis of large tumor suppressor genes LATS1 and LATS2 supports a tumor suppressor role in human cancer.
Tian YU ; John BACHMAN ; Zhi-Chun LAI
Protein & Cell 2015;6(1):6-11
In recent years, human cancer genome projects provide unprecedented opportunities for the discovery of cancer genes and signaling pathways that contribute to tumor development. While numerous gene mutations can be identified from each cancer genome, what these mutations mean for cancer is a challenging question to address, especially for those from less understood putative new cancer genes. As a powerful approach, in silico bioinformatics analysis could efficiently sort out mutations that are predicted to damage gene function. Such an analysis of human large tumor suppressor genes, LATS1 and LATS2, has been carried out and the results support a role of hLATS1//2 as negative growth regulators and tumor suppressors.
Adaptor Proteins, Signal Transducing
;
chemistry
;
metabolism
;
Animals
;
Carrier Proteins
;
chemistry
;
metabolism
;
Computational Biology
;
Genes, Neoplasm
;
Humans
;
LIM Domain Proteins
;
chemistry
;
metabolism
;
Mice
;
Mutation
;
Neoplasms
;
genetics
;
pathology
;
Phosphoproteins
;
chemistry
;
metabolism
;
Phosphorylation
;
Protein Binding
;
Protein Structure, Tertiary
;
Protein-Serine-Threonine Kinases
;
chemistry
;
genetics
;
metabolism
;
Transferases (Other Substituted Phosphate Groups)
;
chemistry
;
metabolism
;
Tumor Suppressor Proteins
;
chemistry
;
genetics
;
metabolism
8.Molecular cloning of the cDNA of canine homeodomain-interacting protein kinase 2.
Sook Yeon LEE ; Jin Young CHUNG ; Il Seob SHIN ; Eun Wha CHOI ; Cheol Yong HWANG ; Hwa Young YOUN ; Hong Ryul HAN
Journal of Veterinary Science 2005;6(2):141-145
The research of p53 is being conducted to find the mechanisms of tumorigenesis and to treat various cancers. Homeodomain-interacting protein kinase2 (HIPK2) is an important factor to regulate p53 and to increase the stability of p53. Activation of HIPK2 leads to the selective phosphorylation of p53, resulting in growth arrest and the enhancement of apoptosis. In this study, the canine HIPK2 cDNA fragments were obtained, and their overlapping regions were aligned to give a total sequence of 3489 bp. The canine HIPK2 cDNA (GenBank accession number; AY800385) shares 93% and 90% sequence identity with those of human and mouse HIPK2, respectively. The canine HIPK2 cDNA contains an open reading frame encoding 1163 amino acid residues and the predicted amino acid sequence has 98% and 96% identity with those of human and mouse, respectively. The deduced amino acid sequence of canine HIPK2 has also all domains' sites compared with human and mouse HIPK2. Therefore, these structural similarities suggested that the canine HIPK2 shares the basic biological functions that HIPK2 exhibit in other species.
Amino Acid Sequence
;
Animals
;
Base Sequence
;
Cloning, Molecular
;
DNA, Complementary/chemistry/genetics
;
Dogs/metabolism/*physiology
;
Male
;
Molecular Sequence Data
;
Polymerase Chain Reaction/veterinary
;
Protein-Serine-Threonine Kinases/*genetics
;
Sequence Alignment
;
Sequence Analysis, DNA
9.Role of interleukin-17 in alveolar fluid clearance in mice with acute lung injury.
Yan ZHAO ; Li CHENG ; Zhi-Xin SONG ; Xin-Yu DENG ; Jing HE ; Wang DENG ; Dao-Xin WANG
Journal of Southern Medical University 2016;37(4):494-498
OBJECTIVETo investigate the role of interleukin-17 (IL-17) in alveolar fluid clearance in mice with acute lung injury (ALI) and explore the possible mechanism.
METHODSSixteen IL-17-knockout mice and 16 wild-type mice were both randomized for intratracheal instillation of PBS (control) on lipopolysaccharide (LPS) to induce ALI. Forty-eight hours after the treatments, the wet-dry ratio (W/D) of the lungs, IL-8 in the bronchoalveolar lavage fluid (BALF) and histopathological changes of the lung tissues were examined. The expressions of epithelial sodium channel α subunit (α-ENaC) was detected with Western blotting and liver kinase B1 (LKB1) was detected with immunohistochemistry.
RESULTSCompared with wild-type mice treated with LPS, IL-17 knockout mice showed significantly decreased W/D of the lungs (9.739∓3.3 vs 5.351∓0.56) and IL-8 level in the BALF (67.50∓7.33 vs 41.00∓3.16 pg/mL) following LPS challenge. Pathological examination revealed reduced alveolar edema fluid aggregations and lower lung injury score in IL-17 knockout mice with also higher expression levels of ENaC and LKB1 compared with the wild-type mice.
CONCLUSIONKnocking out IL-17 in mice not only alleviates inflammation of the lung tissue following ALI but also reduces the loss of ENaC protein and promotes alveolar fluid clearance, mechanism of which is probably associated with LKB1.
Acute Lung Injury ; metabolism ; Animals ; Bronchoalveolar Lavage Fluid ; chemistry ; Epithelial Sodium Channels ; metabolism ; Gene Knockout Techniques ; Interleukin-17 ; genetics ; metabolism ; Interleukin-8 ; metabolism ; Lipopolysaccharides ; Lung ; pathology ; Mice ; Protein-Serine-Threonine Kinases ; metabolism
10.Identification of novel substrates for human checkpoint kinase Chk1 and Chk2 through genome-wide screening using a consensus Chk phosphorylation motif.
Myoung Ae KIM ; Hyun Ju KIM ; Alexandra L BROWN ; Min Young LEE ; Yoe Sik BAE ; Joo In PARK ; Jong Young KWAK ; Jay H CHUNG ; Jeanho YUN
Experimental & Molecular Medicine 2007;39(2):205-212
Checkpoint kinase 1 (Chk1) and Chk2 are effector kinases in the cellular DNA damage response and impairment of their function is closely related to tumorigenesis. Previous studies revealed several substrate proteins of Chk1 and Chk2, but identification of additional targets is still important in order to understand their tumor suppressor functions. In this study, we screened novel substrates for Chk1 and Chk2 using substrate target motifs determined previously by an oriented peptide library approach. The potential candidates were selected by genome-wide peptide database searches and were examined by in vitro kinase assays. ST5, HDAC5, PGC-1alpha, PP2A PR130, FANCG, GATA3, cyclin G, Rad51D and MAD1alpha were newly identified as in vitro substrates for Chk1 and/or Chk2. Among these, HDAC5 and PGC-1alpha were further analyzed to substantiate the screening results. Immunoprecipitation kinase assay of full-length proteins and site-directed mutagenesis analysis of the target motifs demonstrated that HDAC5 and PGC-1alpha were specific targets for Chk1 and/or Chk2 at least in vitro.
Amino Acid Motifs
;
Amino Acid Sequence
;
*Consensus Sequence
;
Genome, Human/*genetics
;
Heat-Shock Proteins/chemistry/metabolism
;
Histone Deacetylases/chemistry/metabolism
;
Humans
;
Molecular Sequence Data
;
Peptide Fragments/chemistry/metabolism
;
Phosphorylation
;
Phosphoserine/metabolism
;
Protein Kinases/*metabolism
;
Protein-Serine-Threonine Kinases/*metabolism
;
Substrate Specificity
;
Transcription Factors/chemistry/metabolism