1.Calpain inhibitors reduce the cornified cell envelope formation by inhibiting proteolytic processing of transglutaminase 1.
Experimental & Molecular Medicine 1998;30(4):257-262
Calpain I (mu-calpain) and II (m-calpain) are well known calcium-activated neutral cysteine proteases. Many reports have shown that activation of calpain is related to cataract formation, neuronal degeneration, blood clotting, ischemic injuries, muscular dystrophy and cornified cell envelope (CE) formation. Here, we report that insoluble CE formation was reduced after treatment with calpain I inhibitor (N-acetyl-leucyl-leucyl-norleucinal) on normal human epidermal keratinocytes (NHEK), whereas serine and thiol protease inhibitors had no effect on the reduction of CE. When NHEK cells were confluent, keratinocytes were treated with various concentrations (0.5 microM-0.5 mM) of calpain I inhibitor or serine and thiol protease inhibitors under calcium induced differentiation. Insoluble CE formation was reduced about 90% in the 50 microM calpain inhibitor I treated group by day 9 of culture, whereas insoluble CE was reduced only 10% in the same condition. Interestingly TGase activity was blocked by 90% in the 0.5 mM calpain inhibitor treated group within 72 h, whereas TGase activity was retained by 80% in the 0.5 mM serine protease inhibitor treated group at 7 day treatment. Therefore it can be suggested that cysteine protease calpains might be responsible for the activation of the TGase 1 enzyme to complete insoluble CE formation during epidermal differentiation.
Calcium/pharmacology
;
Calpain/metabolism*
;
Calpain/antagonists & inhibitors*
;
Cell Differentiation
;
Dose-Response Relationship, Drug
;
Epidermis/metabolism
;
Human
;
In Vitro
;
Keratinocytes/metabolism
;
Keratinocytes/enzymology
;
Protease Inhibitors/pharmacology
;
Protein-Glutamine gamma-Glutamyltransferase/metabolism*
;
Protein-Glutamine gamma-Glutamyltransferase/antagonists & inhibitors*
;
Tissue Culture
2.Isolation and characterization of brain-specific transglutaminases from rat.
Sahng Jung KWAK ; Soo Youl KIM ; Yong Sik KIM ; Kye Yong SONG ; In Gyu KIM ; Sang Chul PARK
Experimental & Molecular Medicine 1998;30(4):177-185
The relevance of transglutaminases with neural function and several disorders has been emphasized recently. Especially, many polypeptides associated with neurodegenerative diseases are suggested to be putative transglutaminase substrates such as beta amyloid protein of Alzheimer's disease, microtubule-associated proteins and neurofilaments, etc. In addition, the CAG repeated gene products with probable polyglutamine tract, putative transglutaminase substrates, were identified in several neurodegenerative disorders. However, the identity of the brain transglutaminase has not been confirmed, because of enzymic stability and low activity. In the present experiment, we have isolated brain-specific transglutaminases, designated as TGase NI and TGase NII, which are different from other types of transglutaminases in respects of molecular weights (mw. 45 kDa, 29 kDa respectively), substrate affinity, elution profile on ion-exchange chromatography, sensitivity to proteases and ethanol, and immunological properties. The enzymes were localized specifically in the brain tissues but not in the liver tissue. And neural cells such as pheochromocytoma cell, glioma cell, primary neuronal and glial cells were shown to be enriched with TGase NI and TGase NII. The possible biological roles of the enzymes were discussed not only on the aspect of crosslinking activity but also of signal transducing capacity of the enzyme in the brain.
Animal
;
Astrocytes/enzymology
;
Blotting, Western
;
Brain/enzymology*
;
Calcium/metabolism
;
Chromatography, Ion Exchange
;
Endopeptidases/pharmacology
;
Enzyme Stability
;
Ethanol/pharmacology
;
Glioma
;
Immunoblotting
;
Immunohistochemistry
;
Male
;
Molecular Weight
;
Neurons/enzymology
;
PC12 Cells
;
Protein-Glutamine gamma-Glutamyltransferase/isolation & purification*
;
Protein-Glutamine gamma-Glutamyltransferase/immunology
;
Protein-Glutamine gamma-Glutamyltransferase/chemistry*
;
Rats
;
Rats, Sprague-Dawley
;
Trypsin/pharmacology
;
Tumor Cells, Cultured
3.Bricks and mortar of the epidermal barrier.
Zoltan NEMES ; Peter M STEINERT
Experimental & Molecular Medicine 1999;31(1):5-19
A specialized tissue type, the keratinizing epithelium, protects terrestrial mammals from water loss and noxious physical, chemical and mechanical insults. This barrier between the body and the environment is constantly maintained by reproduction of inner living epidermal keratinocytes which undergo a process of terminal differentiation and then migrate to the surface as interlocking layers of dead stratum corneum cells. These cells provide the bulwark of mechanical and chemical protection, and together with their intercellular lipid surroundings, confer water-impermeability. Much of this barrier function is provided by the cornified cell envelope (CE), an extremely tough protein/lipid polymer structure formed just below the cytoplasmic membrane and subsequently resides on the exterior of the dead cornified cells. It consists of two parts: a protein envelope and a lipid envelope. The protein envelope is thought to contribute to the biomechanical properties of the CE as a result of cross-linking of specialized CE structural proteins by both disulfide bonds and N(epsilon)-(gamma-glutamyl)lysine isopeptide bonds formed by transglutaminases. Some of the structural proteins involved include involucrin, loricrin, small proline rich proteins, keratin intermediate filaments, elafin, cystatin A, and desmosomal proteins. The lipid envelope is located on the exterior of and covalently attached by ester bonds to the protein envelope and consists of a monomolecular layer of omega-hydroxyceramides. These not only serve of provide a Teflon-like coating to the cell, but also interdigitate with the intercellular lipid lamellae perhaps in a Velcro-like fashion. In fact the CE is a common feature of all stratified squamous epithelia, although its precise composition, structure and barrier function requirements vary widely between epithelia. Recent work has shown that a number of diseases which display defective epidermal barrier function, generically known as ichthyoses, are the result of genetic defects of the synthesis of either CE proteins, the transglutaminase 1 cross-linking enzyme, or defective metabolism of skin lipids.
Animal
;
Cell Membrane/metabolism
;
Epidermis/metabolism*
;
Epidermis/chemistry*
;
Human
;
Ichthyosis/metabolism
;
Ichthyosis/genetics
;
Keratinocytes/metabolism*
;
Keratinocytes/chemistry
;
Membrane Lipids/metabolism*
;
Membrane Proteins/metabolism*
;
Protein-Glutamine gamma-Glutamyltransferase/metabolism
4.Differentiation characteristics of cholesteatoma epithelium determined by expression of transglutaminase isoenzymes.
Chin Soon CHANG ; Byung Hoon JUN ; Kye Yong SONG ; In Gyu KIM
Journal of Korean Medical Science 1999;14(6):665-670
Transglutaminase (TGase) isoenzymes are involved in the process of the differentiation and cornification of keratinocytes in the epidermis. This study investigates the presence and localization of three TGase isoenzymes to elucidate the nature and differentiation status of the squamous epithelium in human aural cholesteatoma. Twenty cholesteatoma specimens were used. The presence and localization of three TGase isoenzymes were studied by reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry. mRNA expression of three TGase isoenzymes were detected in the tested cholesteatomas with variable levels. The immunohistochemical staining patterns of three TGase isoenzymes showed variations within specimens, relating to keratinizing activity. TGase K is the most abundant among three isoenzymes. Keratinizing epithelium of cholesteatoma have similar expression profiles of TGase isoenzymes with those of epidermis of the skin. Other areas, particularly those showing non-keratinizing epithelium, showed weak immunostaining of TGase E and C, suggesting its different maturation status from keratinizing epithelium. The results of this study indicate that epithelium of cholesteatoma undergoes same direction of maturation and differentiation characteristics as the epidermis of skin, evidenced by similar expressions of TGases both in mRNA level and immunohistochemistry.
Cell Differentiation
;
Cholesteatoma, Middle Ear/genetics
;
Cholesteatoma, Middle Ear/enzymology*
;
Comparative Study
;
Diagnosis, Differential
;
Epidermis/enzymology
;
Epithelial Cells/enzymology
;
Human
;
Immunohistochemistry
;
Isoenzymes/metabolism
;
Isoenzymes/genetics
;
Keratinocytes/enzymology
;
Protein-Glutamine gamma-Glutamyltransferase/metabolism*
;
Protein-Glutamine gamma-Glutamyltransferase/genetics
;
RNA, Messenger/metabolism
;
Reverse Transcriptase Polymerase Chain Reaction
5.Hydrogen peroxide mediates doxorubicin-induced transglutaminase 2 expression in PC-14 human lung cancer cell line.
Experimental & Molecular Medicine 1999;31(2):83-88
Increased expression of Transglutaminases 2 (TGase 2, TGase C) was observed in PC-14 human lung cancer cells in association with doxorubicin resistance and the reduction of the enzyme expression was correlated with the increasing cytotoxicity of the drug (Han and Park, 1999). Hydrogen peroxide was suggested to be a key mediator for doxorubicin-induced DNA fragmentation leading to apoptosis. A possible role of hydrogen peroxide as a putative mediator of TGase 2 expression in the doxorubicin sensitive PC-14 cells was examined. TGase 2 expression was increased in PC-14 cells treated with doxorubicin in a dose-dependent manner resulting in the concomitant increase of reactive oxygen species. The rise of TGase 2 expression by doxorubicin treatment was inhibited by N-acetylcysteine or glutathione treatment, while direct addition of hydrogen peroxide to PC-14 cells induced TGase 2 expression. These results suggest that generation of hydrogen peroxide induced by doxorubicin treatment is one of the key factors in an enhancement of TGase 2 expression in PC-14 cells.
Acetylcysteine/pharmacology
;
Antineoplastic Agents/pharmacology*
;
Doxorubicin/pharmacology*
;
Enzyme Induction
;
Gene Expression Regulation, Enzymologic
;
Glutathione/pharmacology
;
Human
;
Hydrogen Peroxide/pharmacology
;
Hydrogen Peroxide/metabolism*
;
Lung Neoplasms/enzymology*
;
Protein-Glutamine gamma-Glutamyltransferase/biosynthesis*
;
Reactive Oxygen Species/metabolism
;
Tumor Cells, Cultured/drug effects
6.A new member of alpha 1-adrenoceptor-coupled G alpha h (transglutaminase II) family in pig heart: purification and characterization.
Soon Moon YOO ; Hyun Sik JEONG ; Kee Jung HAN ; Sung Hye CHO ; Hee Sung LEE ; Hye Young YUN ; Nyoun Soo KWON ; Kwang Jin BAEK
Experimental & Molecular Medicine 1998;30(2):81-86
We previously reported an identification of a 77-kDa GTP-binding protein that co-purified with the alpha 1-adrenoceptor following ternary complex formation. In the present paper, we report on the purification and characterization of this GTP-binding protein (termed G alpha h5) isolated from pig heart membranes. After solubilization of pig heart membranes with NaCl, G alpha h5 was purified by sequential chromatographies using DEAE-Cellulose, Q-Sepharose, and GTP-agarose columns. The protein displayed high-affinity GTP gamma S binding which is Mg(2+)-dependent and saturable. The relative order of affinity of nucleotide binding by G alpha h5 was GTP > GDP > ITP >> ATP > or = adenyl-5'-yl imidodiphosphate, which was similar to that observed for other heterotrimeric G-proteins involved in receptor signaling. Moreover, the G alpha h5 demonstrated transglutaminase (TGase) activity that was blocked either by EGTA or GTP gamma S. In support of these observations, the G alpha h5 was recognized by a specific antibody to G alpha h7 or TGase II, indicating a homology with G alpha h (TGase II) family. These results demonstrate that 77-kDa G alpha h5 from pig heart is an alpha 1-adrenoceptor-coupled G alpha h (TGase II) family which has species-specificity in molecular mass.
Animal
;
Binding Sites
;
Binding, Competitive
;
Cross Reactions
;
GTP-Binding Proteins/metabolism*
;
GTP-Binding Proteins/isolation & purification*
;
GTP-Binding Proteins/immunology
;
Guanosine 5'-O-(3-Thiotriphosphate)/metabolism
;
Molecular Weight
;
Myocardium/chemistry*
;
Protein-Glutamine gamma-Glutamyltransferase/metabolism
;
Receptors, Adrenergic, alpha-1/metabolism
;
Swine