1.Bricks and mortar of the epidermal barrier.
Zoltan NEMES ; Peter M STEINERT
Experimental & Molecular Medicine 1999;31(1):5-19
A specialized tissue type, the keratinizing epithelium, protects terrestrial mammals from water loss and noxious physical, chemical and mechanical insults. This barrier between the body and the environment is constantly maintained by reproduction of inner living epidermal keratinocytes which undergo a process of terminal differentiation and then migrate to the surface as interlocking layers of dead stratum corneum cells. These cells provide the bulwark of mechanical and chemical protection, and together with their intercellular lipid surroundings, confer water-impermeability. Much of this barrier function is provided by the cornified cell envelope (CE), an extremely tough protein/lipid polymer structure formed just below the cytoplasmic membrane and subsequently resides on the exterior of the dead cornified cells. It consists of two parts: a protein envelope and a lipid envelope. The protein envelope is thought to contribute to the biomechanical properties of the CE as a result of cross-linking of specialized CE structural proteins by both disulfide bonds and N(epsilon)-(gamma-glutamyl)lysine isopeptide bonds formed by transglutaminases. Some of the structural proteins involved include involucrin, loricrin, small proline rich proteins, keratin intermediate filaments, elafin, cystatin A, and desmosomal proteins. The lipid envelope is located on the exterior of and covalently attached by ester bonds to the protein envelope and consists of a monomolecular layer of omega-hydroxyceramides. These not only serve of provide a Teflon-like coating to the cell, but also interdigitate with the intercellular lipid lamellae perhaps in a Velcro-like fashion. In fact the CE is a common feature of all stratified squamous epithelia, although its precise composition, structure and barrier function requirements vary widely between epithelia. Recent work has shown that a number of diseases which display defective epidermal barrier function, generically known as ichthyoses, are the result of genetic defects of the synthesis of either CE proteins, the transglutaminase 1 cross-linking enzyme, or defective metabolism of skin lipids.
Animal
;
Cell Membrane/metabolism
;
Epidermis/metabolism*
;
Epidermis/chemistry*
;
Human
;
Ichthyosis/metabolism
;
Ichthyosis/genetics
;
Keratinocytes/metabolism*
;
Keratinocytes/chemistry
;
Membrane Lipids/metabolism*
;
Membrane Proteins/metabolism*
;
Protein-Glutamine gamma-Glutamyltransferase/metabolism
2.Transglutaminase 2 inhibits the proliferation of H1 subtype influenza virus in MDCK cells.
Shouqing GUO ; Yuejiao LIAO ; Zhenyu QIU ; Geng LIU ; Jiamin WANG ; Di YANG ; Jiayou ZHANG ; Zilin QIAO ; Zhongren MA ; Zhuo LI ; Zhenbin LIU
Chinese Journal of Biotechnology 2022;38(3):1124-1137
Transglutaminase 2 (TGM2) is a ubiquitous multifunctional protein, which is related to the adhesion of different cells and tumor formation. Previous studies found that TGM2 is involved in the interaction between host cells and viruses, but the effect of TGM2 on the proliferation of influenza virus in cells has not been reported. To explore the effect of TGM2 during H1N1 subtype influenza virus infection, a stable MDCK cell line with TGM2 overexpression and a knockout cell line were constructed. The mRNA and protein expression levels of NP and NS1 as well as the virus titer were measured at 48 hours after pot-infection with H1N1 subtype influenza virus. The results showed that overexpression of TGM2 effectively inhibited the expression of NP and NS1 genes of H1N1 subtype influenza virus, while knockout of TGM2 up-regulated the expression of the NP and NS1 genes, and the expression of the NP at protein level was consistent with that at mRNA level. Virus proliferation curve showed that the titer of H1N1 subtype influenza virus decreased significantly upon TGM2 overexpression. On the contrary, the virus titer in TGM2 knockout cells reached the peak at 48 h, which further proved that TGM2 was involved in the inhibition of H1N1 subtype influenza virus proliferation in MDCK cells. By analyzing the expression of genes downstream of influenza virus response signaling pathway, we found that TGM2 may inhibit the proliferation of H1N1 subtype influenza virus by promoting the activation of JAK-STAT molecular pathway and inhibiting RIG-1 signaling pathway. The above findings are of great significance for revealing the mechanism underlying the interactions between host cells and virus and establishing a genetically engineering cell line for high-yield influenza vaccine production of influenza virus.
Animals
;
Cell Proliferation
;
Dogs
;
Humans
;
Influenza A Virus, H1N1 Subtype/genetics*
;
Influenza, Human
;
Madin Darby Canine Kidney Cells
;
Protein Glutamine gamma Glutamyltransferase 2
3.Differentiation characteristics of cholesteatoma epithelium determined by expression of transglutaminase isoenzymes.
Chin Soon CHANG ; Byung Hoon JUN ; Kye Yong SONG ; In Gyu KIM
Journal of Korean Medical Science 1999;14(6):665-670
Transglutaminase (TGase) isoenzymes are involved in the process of the differentiation and cornification of keratinocytes in the epidermis. This study investigates the presence and localization of three TGase isoenzymes to elucidate the nature and differentiation status of the squamous epithelium in human aural cholesteatoma. Twenty cholesteatoma specimens were used. The presence and localization of three TGase isoenzymes were studied by reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry. mRNA expression of three TGase isoenzymes were detected in the tested cholesteatomas with variable levels. The immunohistochemical staining patterns of three TGase isoenzymes showed variations within specimens, relating to keratinizing activity. TGase K is the most abundant among three isoenzymes. Keratinizing epithelium of cholesteatoma have similar expression profiles of TGase isoenzymes with those of epidermis of the skin. Other areas, particularly those showing non-keratinizing epithelium, showed weak immunostaining of TGase E and C, suggesting its different maturation status from keratinizing epithelium. The results of this study indicate that epithelium of cholesteatoma undergoes same direction of maturation and differentiation characteristics as the epidermis of skin, evidenced by similar expressions of TGases both in mRNA level and immunohistochemistry.
Cell Differentiation
;
Cholesteatoma, Middle Ear/genetics
;
Cholesteatoma, Middle Ear/enzymology*
;
Comparative Study
;
Diagnosis, Differential
;
Epidermis/enzymology
;
Epithelial Cells/enzymology
;
Human
;
Immunohistochemistry
;
Isoenzymes/metabolism
;
Isoenzymes/genetics
;
Keratinocytes/enzymology
;
Protein-Glutamine gamma-Glutamyltransferase/metabolism*
;
Protein-Glutamine gamma-Glutamyltransferase/genetics
;
RNA, Messenger/metabolism
;
Reverse Transcriptase Polymerase Chain Reaction