1.Caveolin-1 is involved in radiation-induced ERBB2 nuclear transport in breast cancer cells.
Yu ZHANG ; Shiying YU ; Liang ZHUANG ; Zu'an ZHENG ; Tengfei CHAO ; Qiang FU
Journal of Huazhong University of Science and Technology (Medical Sciences) 2012;32(6):888-892
This study examined the radiation-induced ERBB2 nuclear transport in the BT474 breast cancer cell line and the relationship between caveolin-1 and radiation-induced ERBB2 nuclear transport. The BT474 cells were treated with herceptin (200 nmol/L), PP2 (a caveolin-1 inhibitor, 100 nmol/L) and irradiation combined or alone. Confocal microscopy was used to observe the nuclear import of ERBB2 and caveolin-1 after irradiation. Western blotting was employed to detect the expression of ERBB2, caveolin-1 and DNA-PKcs after irradiation, and immunoprecipitation to identify the ERBB2 and caveolin-1 complex before perinuclear ERBB2 localization. Confocal microscopy showed the transport of ERBB2 and caveolin-1 from the cell membrane to the nucleus 15 min after irradiation and the proteins accumulated at the perinuclear region within 45 min. Western blotting revealed that the expression levels of ERBB2, caveolin-1 and DNA-PKcs were increased after irradiation and reached a peak 45 min later. Both herceptin and PP2 treatments were found to decrease ERBB2 expression. An immune complex composed of ERBB2 and caveolin-1 was found in the herceptin group after irradiation. It was concluded that after irradiation, ERBB2 may be transported from the cell membrane to the nucleus and activate DNA-PKcs to trigger DNA double-strand break (DSB) repair; caveolin-1 may participate in this process. Treatments involving the downregulation of caveolin-1 may increase the radiosensitization of breast cancer cells.
Active Transport, Cell Nucleus
;
physiology
;
Breast Neoplasms
;
metabolism
;
physiopathology
;
Caveolin 1
;
metabolism
;
Cell Line, Tumor
;
Female
;
Humans
;
Protein Transport
;
physiology
;
Radiation
;
Receptor, ErbB-2
;
metabolism
2.Signaling control of the constitutive androstane receptor (CAR).
Protein & Cell 2014;5(2):113-123
The constitutive androstane receptor (CAR, NR1I3) plays a crucial role in the regulation of drug metabolism, energy homeostasis, and cancer development through modulating the transcription of its numerous target genes. Different from prototypical nuclear receptors, CAR can be activated by either direct ligand binding or ligand-independent (indirect) mechanisms both initiated with nuclear translocation of CAR from the cytoplasm. In comparison to the well-defined ligand-based activation, indirect activation of CAR appears to be exclusively involved in the nuclear translocation through mechanisms yet to be fully understood. Accumulating evidence reveals that without activation, CAR forms a protein complex in the cytoplasm where it can be functionally affected by multiple signaling pathways. In this review, we discuss recent progresses in our understanding of the signaling regulation of CAR nuclear accumulation and activation. We expect that this review will also provide greater insight into the similarity and difference between the mechanisms of direct vs. indirect human CAR activation.
Active Transport, Cell Nucleus
;
genetics
;
Cytoplasm
;
metabolism
;
Hepatocytes
;
metabolism
;
Humans
;
Ligands
;
Protein Transport
;
genetics
;
Receptors, Cytoplasmic and Nuclear
;
genetics
;
metabolism
;
Signal Transduction
;
genetics
3.The antidepressant action of 3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid is mediated by phosphorylation of histone deacetylase 5.
Min Hyeop PARK ; Miyeon CHOI ; Yong Seok KIM ; Hyeon SON
The Korean Journal of Physiology and Pharmacology 2018;22(2):155-162
3-(2-Carboxypiperazin-4-yl)propyl-1-phosphonic acid (CPP), a competitive N-methyl-D-aspartate (NMDA) receptor antagonist, produces rapid antidepressant-like effects in animal models of depression. However, the molecular mechanisms underlying these behavioral actions remain unknown. Here, we demonstrate that CPP rapidly stimulates histone deacetylase (HDAC) 5 phosphorylation and nuclear export in rat hippocampal neurons. These effects are accompanied by calcium/calmodulin kinase II (CaMKII) and protein kinase D (PKD) phosphorylation. Behavioral experiments revealed that viral-mediated hippocampal knockdown of HDAC5 blocked the antidepressant effects of CPP in stressed animals. Taken together, our results imply that CPP acts via HDAC5 and suggest that HDAC5 is a common regulator contributing to the antidepressant actions of NMDA receptor antagonists such as CPP.
Active Transport, Cell Nucleus
;
Animals
;
Depression
;
Hippocampus
;
Histone Deacetylases*
;
Histones*
;
Models, Animal
;
N-Methylaspartate
;
Neurons
;
Phosphorylation*
;
Phosphotransferases
;
Protein Kinases
;
Rats
4.Transient exposure to hydrogen peroxide inhibits the ubiquitination of phosphorylated IkappaBalpha in TNFalpha-stimulated HEK293 cells.
Yeji LEE ; Jin CHOI ; Kyung Ho HA ; Dae Myung JUE
Experimental & Molecular Medicine 2012;44(8):513-520
During ischemia-reperfusion injury, brief pre-exposure to oxidative stress renders organs resistant to subsequent severe damage. NF-kappaB is a transcription factor that is involved in reperfusion-induced inflammatory and immune responses. The activity of NF-kappaB has been shown to be modulated by oxidative stress in various cell types through different pathways. We studied the effect of pre-exposure to oxidative stress on subsequent NF-kappaB activation in TNFalpha-stimulated HEK293 cells. The cells were transiently exposed to 0.5 mM H2O2 for 20 min, prior to stimulation with TNFalpha, and the subsequent expression of NF-kappaB-dependent genes and the levels of NF-kappaB signaling molecules were measured. Pre-exposure to H2O2 significantly delayed the TNFalpha-induced expression of an NF-kappaB reporter gene and inflammatory proteins (intercellular adhesion molecule-1 and IL-1beta). The degradation of inhibitor of NF-kappaB alpha (IkappaBalpha) and the nuclear translocation of NF-kappaB were also delayed by H2O2 treatment, whereas IkappaBalpha phosphorylation and IkappaB kinase activity were not changed. When we examined the ubiquitin/proteosome pathway in H2O2-treated cells, we could not detect significant changes in proteosomal peptidase activities, but we were able to detect a delay of IkappaBalpha poly-ubiquitination. Our results suggest that transient exposure to oxidative stress temporally inhibits NF-kappaB-dependent gene expression by suppressing the poly-ubiquitination of phosphorylated IkappaBalpha in HEK293 cells.
Active Transport, Cell Nucleus
;
Cell Nucleus/metabolism
;
Enzyme Activation/drug effects
;
HEK293 Cells
;
Humans
;
Hydrogen Peroxide/*pharmacology
;
I-kappa B Kinase/antagonists & inhibitors/*metabolism
;
Phosphorylation/drug effects
;
Protein Transport
;
Tumor Necrosis Factor-alpha/*pharmacology
;
Ubiquitination/*drug effects
5.Importin-β2: a key to two gates?
Protein & Cell 2010;1(9):791-792
6.Distinct Patterns of Cleavage and Translocation of Cell Cycle Control Proteins in CD95-induced and p53-induced apoptosis.
Weon Seo PARK ; Kyeong Cheon JUNG ; Doo Hyun CHUNG ; Woo Dong NAM ; Won Jin CHOI ; Youngmee BAE
Journal of Korean Medical Science 2003;18(4):467-472
Apoptotic cell death induced by p53 occurs at a late G1 cell cycle checkpoint termed the restriction(R)point, and it has been proposed that p53-induced apoptosis causes upregulation of CD95. However, as cells with defective in CD95 signaling pathway are still sensitive to p53-induced apoptosis, CD95 cannot be the sole factor resulting in apoptosis. In addition, unlike p53-induced apoptosis, the relationship between CD95-mediated apoptosis and the cell cycle is not clearly understood. It would there-fore be worth investigating whether CD95-mediated cell death is pertinent with p53-induced apoptosis in view of cell cycle related molecules. In this report, biochemical analysis showed that etoposide-induced apoptosis caused the induction and the nuclear translocation of effector molecules involved in G1 cell cycle checkpoint. However, there was no such translocation in the case of CD95-mediated death. Thus, although both types of apoptosis involved caspase activation, the cell cycle related proteins responded differently. This argues against the idea that p53-induced apoptosis occurs through the induction of CD95/CD95L expression.
Active Transport, Cell Nucleus
;
Antigens, CD95/*metabolism
;
*Apoptosis
;
Cell Cycle
;
Cell Nucleus/metabolism
;
Coculture
;
Dose-Response Relationship, Drug
;
Down-Regulation
;
Etoposide/pharmacology
;
Flow Cytometry
;
Human
;
Immunoblotting
;
Jurkat Cells
;
Nucleic Acid Synthesis Inhibitors/pharmacology
;
Protein Binding
;
Protein Transport
;
Protein p53/*metabolism
;
Signal Transduction
;
Up-Regulation
7.Role of c-Jun N-terminal kinase-mediated FOXO3a nuclear translocation in neuronal apoptosis in neonatal rats with hypoxic-ischemic brain damage.
De-Yuan LI ; Jin-Lin WU ; Li-Li LUO ; Li-Na QIAO ; Zhong-Qiang LIU ; Guo-Yan LU ; Yang WANG
Chinese Journal of Contemporary Pediatrics 2017;19(4):458-462
OBJECTIVETo explore the mechanisms of neuroprotective effects of c-Jun N-terminal kinase (JNK)/FOXO3a transcription factor signaling pathway inhibition on hypoxic-ischemic neuronal apoptosis in neonatal rats with hypoxic-ischemic brain damage (HIBD).
METHODSSixty-four 7-day-old Sprague-Dawley rats were divided into four groups: hypoxia-ischemia (HI), sham-operated, JNK specific inhibitor AS601245-treated, and DMSO vehicle. Rats' cerebral cortexes were collected at 24 hours after HI. Western blot was used to detect the protein expression of JNK, p-JNK, FOXO3a, nuclear and cytoplasmic FOXO3a, Bim, and CC3. TUNEL staining was used to detect the apoptotic cells.
RESULTSCompared with the sham-operated group, p-JNK protein increased (P<0.01), nuclear protein of FOXO3a increased (P<0.01), cytoplasmic protein decreased (P<0.01), and pro-apoptotic proteins Bim and CC3 increased 24 hours after HI (P<0.01). Compared with the HI and DMSO vehicle groups, p-JNK protein was reduced (P<0.01), nuclear protein of FOXO3a was also reduced (P<0.01), cytoplasmic protein increased (P<0.01), and Bim and CC3 proteins decreased (P<0.01) in the AS601245-treated group 24 hours after HI. TUNEL positive cells were reduced in the AS601245-treated rats compared with the HI and DMSO vehicle groups 24 hours after HI (P<0.01).
CONCLUSIONSJNK activity increases in the neonatal rat brain with HI damage. JNK activity inhibition can inhibit FOXO3a translocation from cytoplasm to nucleus and downregulate the levels of pro-apoptotic proteins Bim and CC3, leading to the reduction of neuronal apoptosis.
Active Transport, Cell Nucleus ; Animals ; Animals, Newborn ; Apoptosis ; Cell Nucleus ; metabolism ; Female ; Forkhead Box Protein O3 ; metabolism ; Hypoxia-Ischemia, Brain ; pathology ; JNK Mitogen-Activated Protein Kinases ; physiology ; Male ; Neurons ; pathology ; Rats ; Rats, Sprague-Dawley
9.Synergistic Effect of Interleukin-6 and Hyaluronic Acid on Cell Migration and ERK Activation in Human Keratinocytes.
Jee Hyun CHOI ; Jin Hyun JUN ; Ji Hyun KIM ; Ho Joong SUNG ; Jong Hun LEE
Journal of Korean Medical Science 2014;29(Suppl 3):S210-S216
Wound healing is initiated and progressed by complex integrated process of cellular, physiologic, and biochemical events, such as inflammation, cell migration and proliferation. Interleukin 6 (IL-6) is a multifunctional cytokine, and it could regulate the inflammatory response of wound healing process in a timely manner. Hyaluronic acid (HA) is an essential component of the extracellular matrix, and contributes significantly to cell proliferation and migration. The purpose of this study was to investigate the effects of IL-6 or/and HA on the cell migration process in human keratinocytes. Combining IL-6 and HA significantly increased the cell migration in scratch based wound healing assay. The phosphorylation of extracellular-signal-regulated kinase (ERK) was significantly increased after 1 hr of IL-6 and HA treatment, but the phosphorylation of p38 mitogen-activated protein kinase (MAPK) was not. We also found that significant increase of the NF-kappaB translocation from cytoplasm into nucleus after 1 hr of IL-6 or/and HA treatments. This study firstly showed that synergistic effects of combining IL-6 and HA on the cell migration of wound healing by activation of ERK and NF-kappaB signaling. Further studies might be required to confirm the synergistic effects of HA and IL-6 in the animal model for the development of a novel therapeutic mixture for stimulation of wound healing process.
Active Transport, Cell Nucleus/drug effects
;
Cell Line
;
Cell Movement/*drug effects
;
Cell Proliferation/drug effects
;
Cell Survival/drug effects
;
Enzyme Activation/drug effects
;
Extracellular Signal-Regulated MAP Kinases/*metabolism
;
Humans
;
Hyaluronic Acid/*pharmacology
;
Interleukin-6/*pharmacology
;
Keratinocytes/*metabolism
;
MAP Kinase Signaling System/drug effects
;
NF-kappa B/metabolism
;
Phosphorylation/drug effects
;
Protein Transport/drug effects
;
Wound Healing
;
p38 Mitogen-Activated Protein Kinases/metabolism
10.Aspirin-induced Bcl-2 translocation and its phosphorylation in the nucleus trigger apoptosis in breast cancer cells.
Bo Hwa CHOI ; Goutam CHAKRABORTY ; Kwanghee BAEK ; Ho Sup YOON
Experimental & Molecular Medicine 2013;45(10):e47-
Here, we report that B-cell lymphoma 2 (Bcl-2) is a novel target molecule of aspirin in breast cancer cells. Aspirin influenced the formation of a complex by Bcl-2 and FKBP38 and induced the nuclear translocation of Bcl-2 and its phosphorylation. These events inhibited cancer cell proliferation and subsequently enhanced MCF-7 breast cancer cell apoptosis. Bcl-2 knockdown using small interfering RNA (siRNA) delayed apoptotic cell death, which correlated with increased proliferation following aspirin exposure. In contrast, Bcl-2 overexpression enhanced the onset of aspirin-induced apoptosis, which was also associated with a significant increase in Bcl-2 phosphorylation in the nucleus. Therefore, this study may provide novel insight into the molecular mechanism of aspirin, particularly its anticancer effects in Bcl-2- and estrogen receptor-positive breast cancer cells.
Active Transport, Cell Nucleus/drug effects
;
*Apoptosis
;
Aspirin/*pharmacology
;
Cell Nucleus/*metabolism
;
Humans
;
MCF-7 Cells
;
Phosphorylation
;
Protein Binding
;
Proto-Oncogene Proteins c-bcl-2/genetics/*metabolism
;
Tacrolimus Binding Proteins/metabolism