1.Heteromerization of TRP channel subunits: extending functional diversity.
Wei CHENG ; Changsen SUN ; Jie ZHENG
Protein & Cell 2010;1(9):802-810
Transient receptor potential (TRP) channels are widely found throughout the animal kingdom. By serving as cellular sensors for a wide spectrum of physical and chemical stimuli, they play crucial physiological roles ranging from sensory transduction to cell cycle modulation. TRP channels are tetrameric protein complexes. While most TRP subunits can form functional homomeric channels, heteromerization of TRP channel subunits of either the same subfamily or different subfamilies has been widely observed. Heteromeric TRP channels exhibit many novel properties compared to their homomeric counterparts, indicating that co-assembly of TRP channel subunits has an important contribution to the diversity of TRP channel functions.
Animals
;
Ankyrin Repeat
;
Humans
;
Models, Molecular
;
Protein Interaction Domains and Motifs
;
Protein Multimerization
;
Protein Structure, Quaternary
;
Protein Structure, Tertiary
;
Protein Subunits
;
TRPC Cation Channels
;
chemistry
;
genetics
;
physiology
2.Cell-free expression and functional reconstitution of CALM in clathrin assembly.
Experimental & Molecular Medicine 2001;33(2):89-94
Clathrin-mediated vesicle formation is an essential step in the intracellular trafficking of the protein and lipid. Binding of clathrin assembly protein to clathrin triskelia induces their assembly into clathrin-coated vesicles (CCVs). In order to better understand a possible role of post-translational modification of CALM (clathrin assembly protein lymphoid myeloid), the homologue of AP180, in the assembly of CCVs, CALM was expressed in the cell-free reticulocyte translation system that is capable of carrying out post-translational modification. The apparent molecular weight of the expressed recombinant CALM was estimated as 105 kD. Alkaline phosphatase treatment of CALM resulted in a mobility shift on SDS-PAGE. We found that CALM was associated with the proteins harboring SH3 domain, promote assembly of clathrin triskelia into clathrin cage and bound to the preformed clathrin cage. CALM was also proteolyzed by caspase 3 and calpain but not by caspase 8. These results indicated that the post-translationally modified CALM, expressed in the eukaryotic cell-free reticulocyte translation system was able to mediate the assembly of clathrin and the coated-vesicle formation.
Alkaline Phosphatase/pharmacology
;
Animal
;
Brain/metabolism
;
Calpain/metabolism
;
Carrier Proteins/*chemistry
;
Caspases/metabolism
;
Cattle
;
Cell-Free System
;
Clathrin/*chemistry
;
Electrophoresis, Polyacrylamide Gel
;
Glutathione Transferase/metabolism
;
Lipids/chemistry
;
Membrane Proteins/*chemistry
;
Phosphorylation
;
Protein Binding
;
Protein Processing, Post-Translational
;
Protein Structure, Tertiary
;
Protein Transport
;
Recombinant Proteins/chemistry/metabolism
;
Reticulocytes/metabolism
;
Support, Non-U.S. Gov't
;
Translation, Genetic
;
src Homology Domains
3.Production and characterization of monoclonal antibodies against amphiphysins.
Yu Lian JIN ; Kyung Yong KIM ; Nak Kyun SOUNG ; Eun Young SHIN ; Eung Gook KIM ; Seung Ryul KIM
Experimental & Molecular Medicine 2001;33(2):69-75
Amphiphysin I and II, proteins enriched in nerve terminals, form heterodimers and interact with dynamin and synaptojanin through their Src homology 3 (SH3) domain. In order to study the expression profile of Amphs in cells and tissues and the interaction state with other cellular molecules, we have prepared specific monoclonal antibodies (mAbs) designed to bait N-terminus, middle part, and C-terminus domains of Amph I, respectively by immunizing with the expressed smaller domain molecules using the GST gene fusion system. The expression of Amphs was found to be most abundant in PC12 cells, followed by B103 cells and vascular smooth muscle cells. Western blot analysis showed a relatively high level expression of Amphs that were found in both mouse and rat brain. There appeared to be some species difference in the expression pattern, i.e. Amphs are present more in the testis than in the lungs in rats, however, they are reversed in mice. Characterization of the mAbs revealed that clone 14-23 precipitated Amph I and II, whereas clone 8-2 could only precipitate Amph I. In addition, clathrin and dynamin in a complex with Amph were captured in the precipitate formed by mAbs and identified by the Western blot analysis. Cellular distribution of Amph was visualized with confocal immunofluorescence microscopy performed using the labeled-mAbs. Taken together, these results demonstrated that mAbs provided an excellent measure for studying Amphs' expression profile and their interacting proteins.
Animal
;
*Antibodies, Monoclonal
;
Blotting, Western
;
Brain/metabolism
;
Cells, Cultured
;
Dimerization
;
Enzyme-Linked Immunosorbent Assay
;
Glutathione Transferase/metabolism
;
Human
;
Mice
;
Mice, Inbred BALB C
;
Microscopy, Confocal
;
Nerve Tissue Proteins/*chemistry/*immunology
;
PC12 Cells
;
Precipitin Tests
;
Protein Binding
;
Protein Structure, Tertiary
;
Rats
;
Recombinant Fusion Proteins/metabolism
;
Support, Non-U.S. Gov't
;
src Homology Domains
4.Biological Network Evolution Hypothesis Applied to Protein Structural Interactome.
Genomics & Informatics 2003;1(1):7-19
The latest measure of the relative evolutionary age of protein structure families was applied (based on taxonomic diversity) using the protein structural interactome map (PSIMAP). It confirms that, in general, protein domains, which are hubs in this interaction network, are older than protein domains with fewer interaction partners. We apply a hypothesis of 'biological network evolution' to explain the positive correlation between interaction and age. It agrees to the previous suggestions that proteins have acquired an increasing number of interaction partners over time via the stepwise addition of new interactions. This hypothesis is shown to be consistent with the scale-free interaction network topologies proposed by other groups. Closely co-evolved structural interaction and the dynamics of network evolution are used to explain the highly conserved core of protein interaction pathways, which exist across all divisions of life.
Humans
;
Protein Structure, Tertiary
5.Crystal structure of the N-terminal ankyrin repeat domain of TRPV3 reveals unique conformation of finger 3 loop critical for channel function.
Di-Jing SHI ; Sheng YE ; Xu CAO ; Rongguang ZHANG ; KeWei WANG
Protein & Cell 2013;4(12):942-950
In all six members of TRPV channel subfamily, there is an ankyrin repeat domain (ARD) in their intracellular N-termini. Ankyrin (ANK) repeat, a common motif with typically 33 residues in each repeat, is primarily involved in protein-protein interactions. Despite the sequence similarity among the ARDs of TRPV channels, the structure of TRPV3-ARD, however, remains unknown. Here, we report the crystal structure of TRPV3-ARD solved at 1.95 Å resolution, which reveals six-ankyrin repeats. While overall structure of TRPV3-ARD is similar to ARDs from other members of TRPV subfamily; it, however, features a noticeable finger 3 loop that bends over and is stabilized by a network of hydrogen bonds and hydrophobic packing, instead of being flexible as seen in known TRPV-ARD structures. Electrophysiological recordings demonstrated that mutating key residues R225, R226, Q255, and F249 of finger 3 loop altered the channel activities and pharmacology. Taken all together, our findings show that TRPV3-ARD with characteristic finger 3 loop likely plays an important role in channel function and pharmacology.
Amino Acid Sequence
;
Ankyrin Repeat
;
Crystallography, X-Ray
;
HEK293 Cells
;
Humans
;
Models, Molecular
;
Molecular Sequence Data
;
Patch-Clamp Techniques
;
Protein Binding
;
Protein Conformation
;
Protein Structure, Tertiary
;
Sequence Homology, Amino Acid
;
TRPV Cation Channels
;
chemistry
;
physiology
6.Research progress in structure and function of pectin methylesterase.
Sheng WANG ; Kun MENG ; Huiying LUO ; Bin YAO ; Tao TU
Chinese Journal of Biotechnology 2020;36(6):1021-1030
Pectin methylesterase (PME) is an important pectinase that hydrolyzes methyl esters in pectin to release methanol and reduce the degree of methylation of pectin. At present, it has broad application prospects in food processing, tea beverage, paper making and other production processes. With the in-depth study of PME, the crystal structures with different sources have been reported. Analysis of these resolved crystal structures reveals that PME belongs to the right-hand parallel β-helix structure, and its catalytic residues are two aspartic acids and a glutamine, which play the role of general acid-base, nucleophile and stable intermediate, in the catalytic process. At the same time, the substrate specificity is analyzed to understand the recognition mechanism of the substrate and active sites. This paper systematically reviews these related aspects.
Carboxylic Ester Hydrolases
;
chemistry
;
metabolism
;
Catalytic Domain
;
Crystallography
;
Pectins
;
metabolism
;
Protein Structure, Tertiary
;
Substrate Specificity
7.Hrs inhibits citron kinase-mediated HIV-1 budding via its FYVE domain.
Jiwei DING ; Lishan SU ; Guangxia GAO
Protein & Cell 2011;2(6):470-476
Hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs) is a key component of the endosomal sorting complexes required for transport and has been demonstrated to play a regulatory role in endocytosis/exocytosis and the accumulation of internal vesicles in multivesicular bodies. Citron kinase is a Ser/The kinase that we previously reported to enhance human immunodeficiency virus type 1 (HIV-1) virion production. However, the relationship between Hrs and citron kinase in HIV-1 production remains elusive. Here, we report that Hrs interacts with citron kinase via its FYVE domain. Overexpression of Hrs or the FYVE domain resulted in a significant decrease in HIV-1 virion production. Depletion of Hrs by RNA interference in HEK293T cells increased HIV-1 virion production and enhanced the activity of citron kinase. These data suggest that Hrs inhibits HIV-1 production by inhibiting citron kinase-mediated exocytosis.
Down-Regulation
;
Endosomal Sorting Complexes Required for Transport
;
genetics
;
metabolism
;
Endosomes
;
metabolism
;
Exocytosis
;
Gene Expression
;
Gene Silencing
;
drug effects
;
HEK293 Cells
;
HIV Infections
;
genetics
;
metabolism
;
virology
;
HIV-1
;
drug effects
;
genetics
;
growth & development
;
Humans
;
Immunoprecipitation
;
Intracellular Signaling Peptides and Proteins
;
genetics
;
metabolism
;
Microscopy, Fluorescence
;
Phosphoproteins
;
genetics
;
metabolism
;
Plasmids
;
Protein Binding
;
drug effects
;
genetics
;
Protein Interaction Domains and Motifs
;
Protein Structure, Tertiary
;
Protein Transport
;
Protein-Serine-Threonine Kinases
;
genetics
;
metabolism
;
RNA, Small Interfering
;
pharmacology
;
Transfection
;
Virion
;
drug effects
;
genetics
;
growth & development
;
Virus Release
;
drug effects
;
Virus Replication
;
drug effects
8.Characterization of poplar GrxS14 in different structural forms.
Lei WANG ; Yifei LI ; Jean-Pierre JACQUOT ; Nicolas ROUHIER ; Bin XIA
Protein & Cell 2014;5(5):329-333
9.Molecular Screening and Analysis of Ligand Proteins Association with Unique - SH3 Domain of c - Yes.
Sahng June KWAK ; Yeon Sun SEONG
Journal of the Korean Cancer Association 1998;30(2):394-401
No abstract available.
Mass Screening*
;
src Homology Domains*
10.The structure of WbnH in a near active state.
Fengzhi LI ; Siwei LI ; Xiaofen LIU ; Xue YANG ; Peng WANG ; Yuequan SHEN
Protein & Cell 2015;6(8):615-618
Binding Sites
;
Catalytic Domain
;
Crystallography, X-Ray
;
Escherichia coli
;
genetics
;
metabolism
;
Escherichia coli Proteins
;
chemistry
;
genetics
;
metabolism
;
Models, Molecular
;
N-Acetylgalactosaminyltransferases
;
chemistry
;
genetics
;
metabolism
;
Protein Structure, Secondary
;
Protein Structure, Tertiary
;
Substrate Specificity