1.Insight into the Ebola virus nucleocapsid assembly mechanism: crystal structure of Ebola virus nucleoprotein core domain at 1.8 Å resolution.
Shishang DONG ; Peng YANG ; Guobang LI ; Baocheng LIU ; Wenming WANG ; Xiang LIU ; Boran XIA ; Cheng YANG ; Zhiyong LOU ; Yu GUO ; Zihe RAO
Protein & Cell 2015;6(5):351-362
Ebola virus (EBOV) is a key member of Filoviridae family and causes severe human infectious diseases with high morbidity and mortality. As a typical negative-sense single-stranded RNA (-ssRNA) viruses, EBOV possess a nucleocapsid protein (NP) to facilitate genomic RNA encapsidation to form viral ribonucleoprotein complex (RNP) together with genome RNA and polymerase, which plays the most essential role in virus proliferation cycle. However, the mechanism of EBOV RNP formation remains unclear. In this work, we solved the high resolution structure of core domain of EBOV NP. The polypeptide of EBOV NP core domain (NP(core)) possesses an N-lobe and C-lobe to clamp a RNA binding groove, presenting similarities with the structures of the other reported viral NPs encoded by the members from Mononegavirales order. Most strikingly, a hydrophobic pocket at the surface of the C-lobe is occupied by an α-helix of EBOV NP(core) itself, which is highly conserved among filoviridae family. Combined with other biochemical and biophysical evidences, our results provides great potential for understanding the mechanism underlying EBOV RNP formation via the mobility of EBOV NP element and enables the development of antiviral therapies targeting EBOV RNP formation.
Crystallography, X-Ray
;
Ebolavirus
;
physiology
;
Humans
;
Nucleoproteins
;
chemistry
;
genetics
;
metabolism
;
Protein Structure, Tertiary
;
Structure-Activity Relationship
;
Virus Assembly
;
physiology
2.Studies on the mechanism of thermostability and thermophilicity change of thermostable alkaline phosphatase and its mutants.
Feng YU ; Xiao-Feng XU ; Zhe JIN
Chinese Journal of Biotechnology 2003;19(4):493-496
The relationship among the substituted amino acids, the 3D structure simulated on PC through CPHmodels Server ( http://www.cbs.dtu. dk/services/CPHmodels/) and the thermostable performance of 4 thermostable alkaline phosphatase(TAP) mutants selected from a clone bank of more than 200 mutants were analyzed to explore the mechanism of thermostability change. These mutants are TAP(A410T) (A410-->T), TAP(P396S) (P396-->S), TAP2(N100S T320-->I) and TAP4(N100-->S P396-->S A410 -->V P490-->S). TAP and the mutants' thermostable performance was evaluated by measuring the highest tolerable temperature (T1/2) and the optimal reaction temperature (Topt). The 3D structure neighboring the substituted amino acids was simulated by Swiss-PDBViewer to observe the relationship between the structure change and the thermostable performance of TAP and its mutants. The results displayed that all these amino acid substitutions except the T320-->I mutant brought about only a little local change on TAP's 3D structure and very little effect on their optimal reaction temperature, but a significant decrease (nearly 10 degrees C) on their highest tolerable temperature. However, the T320-->I mutation due to close to TAP's active sites did bring about a significant descendents of the mutant in both the highest tolerable temperature and the optimal reaction temperature. Thus, it seems to be able to conclude that most of the amino acid substitutions, no matter where they locate and what structure change they may make, can cause TAP's highest tolerable temperature reduced significantly. What's more, if the mutation occurring near or in the active sites, it can also cause TAP's optimal reaction temperature reduced significantly at the same time.
Alkaline Phosphatase
;
chemistry
;
genetics
;
metabolism
;
Electrophoresis, Polyacrylamide Gel
;
Enzyme Stability
;
genetics
;
physiology
;
Mutation
;
Protein Structure, Secondary
;
Protein Structure, Tertiary
;
Temperature
3.Heteromerization of TRP channel subunits: extending functional diversity.
Wei CHENG ; Changsen SUN ; Jie ZHENG
Protein & Cell 2010;1(9):802-810
Transient receptor potential (TRP) channels are widely found throughout the animal kingdom. By serving as cellular sensors for a wide spectrum of physical and chemical stimuli, they play crucial physiological roles ranging from sensory transduction to cell cycle modulation. TRP channels are tetrameric protein complexes. While most TRP subunits can form functional homomeric channels, heteromerization of TRP channel subunits of either the same subfamily or different subfamilies has been widely observed. Heteromeric TRP channels exhibit many novel properties compared to their homomeric counterparts, indicating that co-assembly of TRP channel subunits has an important contribution to the diversity of TRP channel functions.
Animals
;
Ankyrin Repeat
;
Humans
;
Models, Molecular
;
Protein Interaction Domains and Motifs
;
Protein Multimerization
;
Protein Structure, Quaternary
;
Protein Structure, Tertiary
;
Protein Subunits
;
TRPC Cation Channels
;
chemistry
;
genetics
;
physiology
4.Progresses in the structure and function of Kazal-type proteinase inhibitors.
Qing-Liang ZHENG ; Qing SHENG ; Yao-Zhou ZHANG
Chinese Journal of Biotechnology 2006;22(5):695-700
Proteinase inhibitors are widely distributed in many living organisms and play crucial roles in many biological processes, particularly in regulating the proteinase activity spatially and temporally. However, The Kazal family of serine protease inhibitors is one of the most important and extensively studied protease inhibitor families. This type of protease inhibitor normally consists of one or several domains. Every domain has a highly conserved sequence structure and molecular conformation. It is found that contact residues are hyper variable, which are responsible for the interaction of inhibitors and proteinases. Most of them are in the solvent exposed loop. But P1 residue is the key active site of the interaction between inhibitor and enzyme. The types of the amino acid at P1 site likely play an important role in causing different inhibitory activity. The substitutions at the contact residues cause significant effects on the association constant. By using the Laskowski algorithm, the Ki values of a Kazal domain against six serine proteinases can be predicted from the domain' s sequence alone. At present there are many Kazal proteinase inhibitors found in the organisms, which show important biological functions. This article gives a comprehensive review of the newer developments in the characters and the interaction of the Kazal-type inhibitors.
Amino Acid Sequence
;
Models, Molecular
;
Molecular Sequence Data
;
Protein Structure, Tertiary
;
Serine Proteinase Inhibitors
;
chemistry
;
physiology
6.Computer construction and analysis of protein models of the mutant gammaD-crystallin gene.
Ke YAO ; Zhao-hui SUN ; Xing-chao SHENTU ; Kai-jun WANG ; Jian TAN
Chinese Medical Journal 2005;118(9):738-741
BACKGROUNDGammad-crystallin plays an important role in human cataract formation. Being highly stable, gammaD-crystallin proteins are composed of two domains. In this study we constructed and analyzed protein models of the mutant gammaD-crystallin gene, which caused a special fasciculiform congenital cataract affecting a large Chinese family.
METHODSgammaD-crystallin protein structure was predicted by Swiss-Model software using bovine gammaD-crystallin as a template and Prospect software using human betab2-crystallin as a template. The models were observed with a Swiss-Pdb viewer.
RESULTSThe mutant gammaD-crystallin structure predicted by the Swiss-Model software showed that proline23 was an exposed surface residue and P23T change made a decreased hydrogen bond distance between threonine23 and asparagine49. The mutant gammaD-crystallin structure predicted by the Prospect software showed that the P23T change exerted a significant effect on the protein's tertiary structure and yielded hydrogen bonds with aspartic acid21, asparagine24, asparagine49 and serine74.
CONCLUSIONThe mutant gammaD-crystallin gene has a significant effect on the protein's tertiary structure, supporting that alteration of gamma-crystallin plays an important role in human cataract formation.
Animals ; Cattle ; Computer Simulation ; Hydrogen Bonding ; Models, Molecular ; Mutation ; Protein Structure, Tertiary ; gamma-Crystallins ; chemistry ; genetics ; physiology
7.The Role of High Mobility Group Box 1 in Innate Immunity.
Shin Ae LEE ; Man Sup KWAK ; Sol KIM ; Jeon Soo SHIN
Yonsei Medical Journal 2014;55(5):1165-1176
With growing accounts of inflammatory diseases such as sepsis, greater understanding the immune system and the mechanisms of cellular immunity have become primary objectives in immunology studies. High mobility group box 1 (HMGB1) is a ubiquitous nuclear protein that is implicated in various aspects of the innate immune system as a damage-associated molecular pattern molecule and a late mediator of inflammation, as well as in principal cellular processes, such as autophagy and apoptosis. HMGB1 functions in the nucleus as a DNA chaperone; however, it exhibits cytokine-like activity when secreted by injurious or infectious stimuli. Extracellular HMGB1 acts through specific receptors to promote activation of the NF-kappaB signaling pathway, leading to production of cytokines and chemokines. These findings further implicate HMGB1 in lethal inflammatory diseases as a crucial regulator of inflammatory, injurious, and infectious responses. In this paper, we summarize the role of HMGB1 in inflammatory and non-inflammatory states and assess potential therapeutic approaches targeting HMGB1 in inflammatory diseases.
Amino Acid Sequence
;
HMGB1 Protein/chemistry/metabolism/*physiology
;
Humans
;
Immunity, Innate/*physiology
;
*Models, Immunological
;
Molecular Sequence Data
;
Protein Structure, Tertiary
;
Signal Transduction
8.The role of ADAMTSs in arthritis.
Protein & Cell 2010;1(1):33-47
The ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) family consists of 19 proteases. These enzymes are known to play important roles in development, angiogenesis and coagulation; dysregulation and mutation of these enzymes have been implicated in many disease processes, such as inflammation, cancer, arthritis and atherosclerosis. This review briefly summarizes the structural organization and functional roles of ADAMTSs in normal and pathological conditions, focusing on members that are known to be involved in the degradation of extracellular matrix and loss of cartilage in arthritis, including the aggrecanases (ADAMTS-4 and ADAMTS-5), ADAMTS-7 and ADAMTS-12, the latter two are associated with cartilage oligomeric matrix protein (COMP), a component of the cartilage extracellular matrix (ECM). We will discuss the expression pattern and the regulation of these metalloproteinases at multiple levels, including their interaction with substrates, induction by pro-inflammatory cytokines, protein processing, inhibition (e.g., TIMP-3, alpha-2-macroglobulin, GEP), and activation (e.g., syndecan-4, PACE-4).
ADAM Proteins
;
antagonists & inhibitors
;
chemistry
;
genetics
;
physiology
;
Aggrecans
;
metabolism
;
Alternative Splicing
;
Arthritis
;
enzymology
;
genetics
;
Cartilage
;
enzymology
;
Endopeptidases
;
genetics
;
physiology
;
Extracellular Matrix
;
enzymology
;
Humans
;
Protein Structure, Tertiary
9.A structural view of the conserved domain of rice stress-responsive NAC1.
Qingfeng CHEN ; Quan WANG ; Lizhong XIONG ; Zhiyong LOU
Protein & Cell 2011;2(1):55-63
The importance of NAC (named as NAM, ATAF1, 2, and CUC2) proteins in plant development, transcription regulation and regulatory pathways involving protein-protein interactions has been increasingly recognized. We report here the high resolution crystal structure of SNAC1 (stress-responsive NAC) NAC domain at 2.5 Å. Although the structure of the SNAC1 NAC domain shares a structural similarity with the reported structure of the ANAC NAC1 domain, some key features, especially relating to two loop regions which potentially take the responsibility for DNA-binding, distinguish the SNAC1 NAC domain from other reported NAC structures. Moreover, the dimerization of the SNAC1 NAC domain is demonstrated by both soluble and crystalline conditions, suggesting this dimeric state should be conserved in this type of NAC family. Additionally, we discuss the possible NAC-DNA binding model according to the structure and reported biological evidences.
Amino Acid Motifs
;
Amino Acid Sequence
;
Conserved Sequence
;
Crystallography, X-Ray
;
DNA
;
metabolism
;
Models, Molecular
;
Molecular Sequence Data
;
Oryza
;
metabolism
;
physiology
;
Plant Proteins
;
chemistry
;
metabolism
;
Promoter Regions, Genetic
;
genetics
;
Protein Multimerization
;
Protein Structure, Quaternary
;
Protein Structure, Tertiary
;
Stress, Physiological
10.Conserved motifs in voltage sensing proteins.
Chang-He WANG ; Zhen-Li XIE ; Jian-Wei LV ; Zhi-Dan YU ; Shu-Li SHAO
Acta Physiologica Sinica 2012;64(4):379-386
This paper was aimed to study conserved motifs of voltage sensing proteins (VSPs) and establish a voltage sensing model. All VSPs were collected from the Uniprot database using a comprehensive keyword search followed by manual curation, and the results indicated that there are only two types of known VSPs, voltage gated ion channels and voltage dependent phosphatases. All the VSPs have a common domain of four helical transmembrane segments (TMS, S1-S4), which constitute the voltage sensing module of the VSPs. The S1 segment was shown to be responsible for membrane targeting and insertion of these proteins, while S2-S4 segments, which can sense membrane potential, for protein properties. Conserved motifs/residues and their functional significance of each TMS were identified using profile-to-profile sequence alignments. Conserved motifs in these four segments are strikingly similar for all VSPs, especially, the conserved motif [RK]-X(2)-R-X(2)-R-X(2)-[RK] was presented in all the S4 segments, with positively charged arginine (R) alternating with two hydrophobic or uncharged residues. Movement of these arginines across the membrane electric field is the core mechanism by which the VSPs detect changes in membrane potential. The negatively charged aspartate (D) in the S3 segment is universally conserved in all the VSPs, suggesting that the aspartate residue may be involved in voltage sensing properties of VSPs as well as the electrostatic interactions with the positively charged residues in the S4 segment, which may enhance the thermodynamic stability of the S4 segments in plasma membrane.
Arginine
;
chemistry
;
Aspartic Acid
;
chemistry
;
Cell Membrane
;
physiology
;
Conserved Sequence
;
Ion Channel Gating
;
Ion Channels
;
chemistry
;
Membrane Potentials
;
Protein Structure, Tertiary