1.Biological Network Evolution Hypothesis Applied to Protein Structural Interactome.
Genomics & Informatics 2003;1(1):7-19
The latest measure of the relative evolutionary age of protein structure families was applied (based on taxonomic diversity) using the protein structural interactome map (PSIMAP). It confirms that, in general, protein domains, which are hubs in this interaction network, are older than protein domains with fewer interaction partners. We apply a hypothesis of 'biological network evolution' to explain the positive correlation between interaction and age. It agrees to the previous suggestions that proteins have acquired an increasing number of interaction partners over time via the stepwise addition of new interactions. This hypothesis is shown to be consistent with the scale-free interaction network topologies proposed by other groups. Closely co-evolved structural interaction and the dynamics of network evolution are used to explain the highly conserved core of protein interaction pathways, which exist across all divisions of life.
Humans
;
Protein Structure, Tertiary
2.Progresses in predicting the crystallizability of proteins.
Renbin ZHOU ; Huimeng LU ; Dachuan YIN
Chinese Journal of Biotechnology 2014;30(9):1362-1371
Determination of protein 3-dimensional structure offers very important information in biology researches, especially for understanding protein functions and redundant drug design. The X-ray crystallography is still the main technique for protein structure determination. Obtaining protein crystals is an essential procedure after protein purification in this technique. However, there is only 42% of soluble purified proteins yield crystals by statistics. Experimental verification of protein crystallizability is relatively expensive and time-consuming. Thus it is desired to predict the protein crystallizability by a computational method before starting the experiment. In this paper, combined with our own efforts, some successful in silico methods to predict the protein crystallizability are reviewed.
Crystallization
;
methods
;
Crystallography, X-Ray
;
Protein Structure, Tertiary
;
Proteins
;
chemistry
3.Structural Characteristics of Seven IL-32 Variants
Dong Hyun SOHN ; Tam T NGUYEN ; Sinae KIM ; Saerok SHIM ; Siyoung LEE ; Youngmin LEE ; Hyunjhung JHUN ; Tania AZAM ; Joohee KIM ; Soohyun KIM
Immune Network 2019;19(2):e8-
IL-32 exists as seven mRNA transcripts that can translate into distinct individual IL-32 variants with specific protein domains. These translated protein domains of IL-32 variants code for specific functions that allow for interaction with different molecules intracellularly or extracellularly. The longest variant is IL-32γ possessing 234 amino acid residues with all 11 protein domains, while the shortest variant is IL-32α possessing 131 amino acid residues with three of the protein domains. The first domain exists in 6 variants except IL-32δ variant, which has a distinct translation initiation codon due to mRNA splicing. The last eleventh domain is common domain for all seven IL-32 variants. Numerous studies in different fields, such as inflammation, autoimmunity, pathogen infection, and cancer biology, have claimed the specific biological activity of individual IL-32 variant despite the absence of sufficient data. There are 4 additional IL-32 variants without proper transcripts. In this review, the structural characteristics of seven IL-32 transcripts are described based on the specific protein domains.
Autoimmunity
;
Biology
;
Codon, Initiator
;
Inflammation
;
Protein Structure, Tertiary
;
RNA, Messenger
5.Single-particle cryo-electron microscopy opens new avenues in structural biology of G protein-coupled receptor.
Chuntao LI ; Huibing ZHANG ; Yan ZHANG
Journal of Zhejiang University. Medical sciences 2019;48(1):39-43
G protein-coupled receptors(GPCRs)represent the largest class of cell surface receptors,mediating wide range of cellular and physiological processes through their transducers,G proteins and the-arrestins participate in almost all pathological processes. Recent technological advances are revolutionizing the utility of cryo-electron microscopy(cryo-EM),leading to a tremendous progress in the structural studies of biological macromolecules and cryo-EM has played a leading role in the structural biology of GPCR signaling complex. New discoveries of high-resolution threedimensional structures of GPCR signaling complexes based on cryo-EM have emerged vigorously,which depict the common structural characteristics of intermolecular interaction between GPCR and G protein complex-the conformational changes of the transmembrane helix 6 of receptors,and also demonstrate the structural basis of G protein subtype selectivity. Single-particle cryo-EM becomes an efficient tool for identifying the molecular mechanism of receptor-ligand interaction,providing important information for understanding GPCR signaling and the structure-based drug design.
Cryoelectron Microscopy
;
Protein Binding
;
Protein Structure, Tertiary
;
Receptors, G-Protein-Coupled
;
chemistry
6.Studies on the mechanism of thermostability and thermophilicity change of thermostable alkaline phosphatase and its mutants.
Feng YU ; Xiao-Feng XU ; Zhe JIN
Chinese Journal of Biotechnology 2003;19(4):493-496
The relationship among the substituted amino acids, the 3D structure simulated on PC through CPHmodels Server ( http://www.cbs.dtu. dk/services/CPHmodels/) and the thermostable performance of 4 thermostable alkaline phosphatase(TAP) mutants selected from a clone bank of more than 200 mutants were analyzed to explore the mechanism of thermostability change. These mutants are TAP(A410T) (A410-->T), TAP(P396S) (P396-->S), TAP2(N100S T320-->I) and TAP4(N100-->S P396-->S A410 -->V P490-->S). TAP and the mutants' thermostable performance was evaluated by measuring the highest tolerable temperature (T1/2) and the optimal reaction temperature (Topt). The 3D structure neighboring the substituted amino acids was simulated by Swiss-PDBViewer to observe the relationship between the structure change and the thermostable performance of TAP and its mutants. The results displayed that all these amino acid substitutions except the T320-->I mutant brought about only a little local change on TAP's 3D structure and very little effect on their optimal reaction temperature, but a significant decrease (nearly 10 degrees C) on their highest tolerable temperature. However, the T320-->I mutation due to close to TAP's active sites did bring about a significant descendents of the mutant in both the highest tolerable temperature and the optimal reaction temperature. Thus, it seems to be able to conclude that most of the amino acid substitutions, no matter where they locate and what structure change they may make, can cause TAP's highest tolerable temperature reduced significantly. What's more, if the mutation occurring near or in the active sites, it can also cause TAP's optimal reaction temperature reduced significantly at the same time.
Alkaline Phosphatase
;
chemistry
;
genetics
;
metabolism
;
Electrophoresis, Polyacrylamide Gel
;
Enzyme Stability
;
genetics
;
physiology
;
Mutation
;
Protein Structure, Secondary
;
Protein Structure, Tertiary
;
Temperature
7.Measuring rupture forces of P-selectin/PSGL-1 bonds using an optical trap assay.
Yan ZHANG ; Zhiyi YE ; Bo HUO ; Ganyun SUN ; Mian LONG
Journal of Biomedical Engineering 2005;22(5):961-965
Selectin/ligand interaction plays an important role in such biological processes as inflammatory reaction, tumor metastasis, etc. External forces affect dissociation of receptor-ligand bonds. A novel approach, upon optical trap technique, was developed in this study to investigate the dissociation of P-selectin/PSGL-1 (P-Selectin Glycoprotein Ligand 1) bindings. Stiffness of optical trap was calibrated with laser power using a viscous drag method. While P-selectin and PSGL-1 molecules were functionally coated on surfaces of glass beads, respectively, the dissociation of interacting molecule bond was studied by measuring the rupture force distribution. It was found that most probable rupture force increased with loading rate at < 25 pN/s. These results complemented and validated the current theory at low loading rates.
Humans
;
Membrane Glycoproteins
;
chemistry
;
Optics and Photonics
;
instrumentation
;
Protein Binding
;
Protein Structure, Tertiary
8.When MAGE meets RING: insights into biological functions of MAGE proteins.
Yue FENG ; Jinlan GAO ; Maojun YANG
Protein & Cell 2011;2(1):7-12
The melanoma antigen (MAGE) family proteins are well known as tumor-specific antigens and comprise more than 60 genes, which share a conserved MAGE homology domain (MHD). Type I MAGEs are highly expressed cancer antigens, and they play an important role in tumorigenesis and cancer cell survival. Recently, several MAGE proteins were identified to interact with RING domain proteins, including a sub-family of E3 ubiquitin ligases. The binding mode between MAGEs and RING proteins was investigated and one important structure of these MAGE-RING complexes was solved: the MAGE-G1-NSE1 complex. Structural and biochemical studies indicated that MAGE proteins could adjust the E3 ubiquitin ligase activity of its cognate RING partner both in vitro and in vivo. However, the underlying mechanism was not fully understood. Here, we review these exciting advances in the studies on MAGE family, suggest potential mechanisms by which MAGEs activate the E3 activity of their binding RING proteins and highlight the anticancer potential of this family proteins.
Animals
;
Humans
;
Melanoma-Specific Antigens
;
chemistry
;
metabolism
;
Protein Binding
;
Protein Structure, Tertiary
9.Heteromerization of TRP channel subunits: extending functional diversity.
Wei CHENG ; Changsen SUN ; Jie ZHENG
Protein & Cell 2010;1(9):802-810
Transient receptor potential (TRP) channels are widely found throughout the animal kingdom. By serving as cellular sensors for a wide spectrum of physical and chemical stimuli, they play crucial physiological roles ranging from sensory transduction to cell cycle modulation. TRP channels are tetrameric protein complexes. While most TRP subunits can form functional homomeric channels, heteromerization of TRP channel subunits of either the same subfamily or different subfamilies has been widely observed. Heteromeric TRP channels exhibit many novel properties compared to their homomeric counterparts, indicating that co-assembly of TRP channel subunits has an important contribution to the diversity of TRP channel functions.
Animals
;
Ankyrin Repeat
;
Humans
;
Models, Molecular
;
Protein Interaction Domains and Motifs
;
Protein Multimerization
;
Protein Structure, Quaternary
;
Protein Structure, Tertiary
;
Protein Subunits
;
TRPC Cation Channels
;
chemistry
;
genetics
;
physiology
10.Protein interactions in the murine cytomegalovirus capsid revealed by cryoEM.
Wong H HUI ; Qiyi TANG ; Hongrong LIU ; Ivo ATANASOV ; Fenyong LIU ; Hua ZHU ; Z Hong ZHOU
Protein & Cell 2013;4(11):833-845
Cytomegalovirus (CMV) is distinct among members of the Herpesviridae family for having the largest dsDNA genome (230 kb). Packaging of large dsDNA genome is known to give rise to a highly pressurized viral capsid, but molecular interactions conducive to the formation of CMV capsid resistant to pressurization have not been described. Here, we report a cryo electron microscopy (cryoEM) structure of the murine cytomegalovirus (MCMV) capsid at a 9.1 Å resolution and describe the molecular interactions among the ∼3000 protein molecules in the MCMV capsid at the secondary structure level. Secondary structural elements are resolved to provide landmarks for correlating with results from sequence-based prediction and for structure-based homology modeling. The major capsid protein (MCP) upper domain (MCPud) contains α-helices and β-sheets conserved with those in MCPud of herpes simplex virus type 1 (HSV-1), with the largest differences identified as a "saddle loop" region, located at the tip of MCPud and involved in interaction with the smallest capsid protein (SCP). Interactions among the bacteriophage HK97-like floor domain of MCP, the middle domain of MCP, the hook and clamp domains of the triplex proteins (hoop and clamp domains of TRI-1 and clamp domain of TRI-2) contribute to the formation of a mature capsid. These results offer a framework for understanding how cytomegalovirus uses various secondary structural elements of its capsid proteins to build a robust capsid for packaging its large dsDNA genome inside and for attaching unique functional tegument proteins outside.
Amino Acid Sequence
;
Capsid Proteins
;
chemistry
;
metabolism
;
ultrastructure
;
Cryoelectron Microscopy
;
Models, Molecular
;
Molecular Sequence Data
;
Muromegalovirus
;
chemistry
;
ultrastructure
;
Protein Binding
;
Protein Multimerization
;
Protein Structure, Quaternary
;
Protein Structure, Tertiary