2.Comparative Analysis of Protein Tyrosine Phosphatases Regulating Microglial Activation.
Gyun Jee SONG ; Jaehong KIM ; Jong Heon KIM ; Seungeun SONG ; Hana PARK ; Zhong Yin ZHANG ; Kyoungho SUK
Experimental Neurobiology 2016;25(5):252-261
Protein tyrosine phosphatases (PTPs) are key regulatory factors in inflammatory signaling pathways. Although PTPs have been extensively studied, little is known about their role in neuroinflammation. In the present study, we examined the expression of 6 different PTPs (PTP1B, TC-PTP, SHP2, MEG2, LYP, and RPTPβ) and their role in glial activation and neuroinflammation. All PTPs were expressed in brain and glia. The expression of PTP1B, SHP2, and LYP was enhanced in the inflamed brain. The expression of PTP1B, TC-PTP, and LYP was increased after treating microglia cells with lipopolysaccharide (LPS). To examine the role of PTPs in microglial activation and neuroinflammation, we used specific pharmacological inhibitors of PTPs. Inhibition of PTP1B, TC-PTP, SHP2, LYP, and RPTPβ suppressed nitric oxide production in LPS-treated microglial cells in a dose-dependent manner. Furthermore, intracerebroventricular injection of PTP1B, TC-PTP, SHP2, and RPTPβ inhibitors downregulated microglial activation in an LPS-induced neuroinflammation model. Our results indicate that multiple PTPs are involved in regulating microglial activation and neuroinflammation, with different expression patterns and specific functions. Thus, PTP inhibitors can be exploited for therapeutic modulation of microglial activation in neuroinflammatory diseases.
Brain
;
Microglia
;
Neuroglia
;
Nitric Oxide
;
Protein Tyrosine Phosphatase, Non-Receptor Type 2
;
Protein Tyrosine Phosphatases*
3.Changes of activity and expression of protein phosphatase type 2A during the apoptosis of NB4 and MR2 cells induced by arsenic trioxide.
Xi-Hui XU ; Jian OUYANG ; Pin-Hao XIE ; Jun-Hao CHEN
Journal of Experimental Hematology 2008;16(5):1021-1025
This study was aimed to investigate the change of expression and activity of protein phosphatases type 2A (PP2A) during the apoptosis of NB4 and MR2 cells induced by Arsenic trioxide (ATO). NB4 and MR2 cells were incubated with Okadaic acid (OKA) (0.5 nmol/L), ATO (0.5 - 2.0 micromol/L), and the combination of OKA and ATO at the same doses as in the single-agent treatment respectively. Then the proliferation of NB4 and MR2 cells was determined by MTT assay, the morphologic changes of cells were evaluated by Wright's staining, the apoptosis rates were detected by flow cytometry. At last, the activities of PP2A were evaluated by the serine/threonine phosphatase assay system, and the levels of PP2A subunits were detected by Western blot analysis. The results showed that ATO inhibited proliferation of NB4 and MR2 cells, and the inhibition rates of ATO on the two cells significantly increased after the addition of OKA. OKA could augment the apoptosis of NB4 and MR2 cells induced by ATO. During the apoptosis of NB4 and MR2 cells, the activity of PP2A decreased with increasing concentration of ATO, and OKA augmented the inhibitory effect of ATO on the activity. The level of PP2A structural subunit (PP2A-A) decreased during ATO-induced apoptosis of NB4 and MR2 cells, that expressions of B and C subunits of PP2A were relatively unaltered. It is concluded that the activity of PP2A decreases with increasing concentration of ATO during the apoptosis of NB4 and MR2 cells, and the decrease of the activity of PP2A maybe is related to the repression of expression of PP2A -A subunit; the inhibition of the activity of PP2A can promote the ATO induced apoptosis of NB4 and MRL cells.
Apoptosis
;
drug effects
;
Arsenicals
;
pharmacology
;
Cell Line, Tumor
;
Humans
;
Oxides
;
pharmacology
;
Protein Phosphatase 2
;
metabolism
5.Down-regulation of Protein Phosphatase 2A Catalytic Subunit Involved in Mitochondria Fission/fusion Dynamics Imbalance and Functional Impairment Induced by Human tau.
Xiuping LIU ; Zheng ZHENG ; Liling YU ; Juan HU ; Xiachun LI
Acta Academiae Medicinae Sinicae 2020;42(3):297-306
To explore whether the downregulation of protein phosphatase 2A catalytic subunit(PP2Ac)involved in the pathogenesis of mitochondria fission/fusion dynamics and functional imbalance induced by human tau accumulation. After cotransfection with mito-dsRed plasmids and pIRES-eGFP-tau40 plasmids 48 hours,the rat primary hippocampal neurons were observed with a laser scanning confocal microscope for their changes in shape and distribution of mitochondria.The expressions of mitochondria fission/fusion protein and PP2Ac and PP2Ab were detected by Western blotting.Furthermore,the shape and distribution of mitochondria of rat primary hippocampal neuron and wild type 293wt cells were assayed 48 hours after co-transfection with siPP2Ac-EGFP plasmids and mito-DsRed plasmids,and the fission/fusion dynamics of 293wt cells was captured with live cell time-lapse imaging after co-transfection with siPP2Ac plasmids and mito-Dendra2 plasmids.After transfection with siPP2Ac plasmids,the relative level of mitochondria fission/fusion protein of 293wt cells was assayed by Western blotting,and mitochondria membrane potential was detected by JC-1 staining,and the cellular viability was measured by CCK8 assay.Finally,the shape and distribution and membrane potential of mitochondria of HEK293 cells with stable transfection of htau40(293htau)were detected after co-transfection with PP2Ac and mito-dsRed plasmids. Human tau40 expression decreased distribution of mitochondria and significantly lowered PP2Ac level in primary hippocampal neuron(=4.814, =0.0086).Down-regulation of PP2Ac caused mitochondria elongation and perinuclear accumulation in primary hippocampal neuron and 293wt cells;in addition,down-regulation of PP2Ac in 293wt cells significantly increased mitochondria fusion rate(=2.857, =0.0074)and the levels of mitochondria fusion protein mitofusin(MFN)1(=6.768, =0.0025),MFN2(=3.121, =0.0035),and optic atrophy 1(=3.775, =0.0199);however,the levels of dynamin-like protein-1 and Fis1 remained unchanged.The down-regulation of PP2Ac in 293wt cells led to the significant decrease in mitochondria membrane potential(=2.300, =0.0270)and cell viability(=6.249, <0.0001).Finally,up-regulation of PP2Ac attenuated the abnormalities in the shape,distribution and function of mitochondria in the 293htau cells. Down-regulation of PP2Ac is involved in the abnormal shape and distribution of mitochondria and its dysfunction induced by human tau40 in rat primary hippocampal neurons and HEK293 cells.
Animals
;
Catalytic Domain
;
Down-Regulation
;
HEK293 Cells
;
Humans
;
Mitochondria
;
Protein Phosphatase 2
;
Rats
;
tau Proteins
6.Content of bone morphogenetic protein 2 in demineralized bone matrix prepared from different long bones and study of the osteogenic properties in vitro.
Yongjie ZHAO ; Gang YIN ; Rui DU ; Limin WANG ; Mingming DENG ; Guofeng GUAN ; Guangchao SUN ; Ying LIU
Chinese Journal of Reparative and Reconstructive Surgery 2023;37(8):945-951
OBJECTIVE:
To measure the concentration of bone morphogenetic protein 2 (BMP-2) in demineralized bone matrix (DBM) prepared from different long bones and to evaluate the osteoinductivity of different DBM on MC3T3-E1 cells.
METHODS:
Different bones from the same cadaver donor were used as the initial materials for making DBM, which were divided into ulna group (uDBM), humerus group (hDBM), tibia group (tDBM), and femur group (fDBM) according to the origins, and boiled DBM (cDBM) was taken as the control group. The proteins of DBM were extracted by guanidine hydrochloride, and the concentrations of BMP-2 were determined by ELISA assay. Then the DBM were co-cultured with MC3T3-E1 cells, the proliferation of MC3T3-E1 cells was observed by cell counting kit 8 (CCK-8) assay. The osteogenic differentiation ability of MC3T3-E1 cells was qualitatively observed by alizarin red, alkaline phosphatase (ALP), and Van Gieson staining, and the osteogenic differentiation ability of MC3T3-E1 cells was quantitatively analyzed by ALP content. Linear regression was used to analyze the effect of BMP-2 concentration in DBM on ALP synthesis.
RESULTS:
There were significant differences in the concentration of BMP-2 among the DBM groups (P<0.05). The concentrations of BMP-2 in the lower limb long bone were higher than those in the upper limb long bone, and the concentration of BMP-2 in the fDBM group was about 35.5 times that in the uDBM group. CCK-8 assay showed that the cells in each group continued to proliferate within 5 days of co-culture, and the absorbance (A) values at different time points were in the order of cDBM group
Alkaline Phosphatase
;
Bone Matrix
;
Bone Morphogenetic Protein 2
;
Cell Count
;
Coloring Agents
;
Osteogenesis
;
Animals
;
Mice
7.Structural feature and biological function of PPP2R5C gene.
Yang-Qiu LI ; Yu-Bing ZHOU ; Li-Jian YANG
Journal of Experimental Hematology 2009;17(5):1127-1129
PPP2R5C is one of the members of regulatory subunits of protein phosphatase 2A (PP2A), which plays a critical role in cell proliferation, differentiation and transformation, based on its induction of dephosphorylation of P53 at various residues. Recently, it was characterized that the alteration of expression pattern of PPP2R5C is associated with cell malignant transformation, thus PPP2R5C was thought as a marker for progressive disease in B-CLL. In this article the gene structure and biological function of PPP2R5C as well as relation of PPP2R5C with genesis and development of cancer were discussed.
Cell Line, Transformed
;
Cell Proliferation
;
Cell Transformation, Neoplastic
;
Humans
;
Molecular Structure
;
Protein Phosphatase 2
;
genetics
;
Protein Subunits
8.Opening of ATP-sensitive K+ channel by pinacidil requires serine/threonine phosphorylation in rat ventricular myocytes.
The Korean Journal of Physiology and Pharmacology 1999;3(3):293-303
The influences of specific protein phosphatase and protein kinase inhibitors on the ATP-sensitive K+ (KATP) channel-opening effect of pinacidil were investigated in single rat ventricular myocytes using patch clamp technique. In cell-attached patches, pinacidil (100 muM) induced the opening of the KATP channel, which was blocked by the pretreatment with H-7 (100 muM) whereas enhanced by the pretreatment with genistein (30 muM) or tyrphostin A23 (10 muM). In inside-out patches, pinacidil (10 muM) activated the KATP channels in the presence of ATP (0.3 mM) or AMP-PNP (0.3 mM) and in a partial rundown state. The effect of pinacidil (10 muM) was not affected by the pretreatment with protein tyrosine phosphatase 1B (PTP1B, 10 mug ml-1), but blocked by the pretreatment of protein phosphatase 2A (PP2A, 1 U ml-1). In addition, pinacidil (10 muM) could not induce the opening of the reactivated KATP channels in the presence of H-7 (100 muM) but enhanced it in the presence of ATP(1 mM) and genistein (30 muM). These results indicate that the KATP channel-opening effect of pinacidil is not mediated via phosphorylation of KATP channel protein or associated protein, although it still requires the phosphorylation of serine/threonine residues as a prerequisite condition.
1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine
;
Adenosine Triphosphate
;
Adenylyl Imidodiphosphate
;
Animals
;
Genistein
;
KATP Channels
;
Muscle Cells*
;
Phosphorylation*
;
Pinacidil*
;
Protein Kinase Inhibitors
;
Protein Phosphatase 2
;
Protein Tyrosine Phosphatase, Non-Receptor Type 1
;
Rats*
9.The relationship between the peripheral blood of CD61, CD63, PAC-1 and the transplant kidney function.
Yong ZHANG ; De-lin GUAN ; Cheng-qing XIA ; Zhi-you HAN ; Jian-jun XU ; Ju-zhong GAO ; Ke-rang WU
Chinese Journal of Surgery 2003;41(12):881-884
OBJECTIVESTo explore the relationships between the peripheral blood levels of CD61, CD63, PAC-1 and the incidence of acute rejection and tubular necrosis after renal transplantation, and recovery of the graft function.
METHODSThe peripheral blood levels of CD61, CD63, and PAC-1 of 86 patients with uremia in different stages before and after transplantations were analyzed by flow cytometry. The patients were divided into three groups: (1) twenty-nine patients with normal grafts function, (2) hirty with acute rejection and (3) twenty-seven with acute tubular necrosis. The patients with acute rejection were randomly divided into treatment group with anticoagulants and cntrol group.
RESULTSThe peripheral blood levels of CD61, CD63 and PAC-1 significantly increased (P < 0.05) in the patients with acute rejection, in comparison with those with normal grafts function and those with acute tubular necrosis. The peripheral blood levels of CD61, CD63 and PAC-1 in patients with acute rejection in anticoagulants therapy was lower, recovery time of the grafts function was shorter, one-year survival rates of patients and grafts were higher, as compared with those of controls.
CONCLUSIONSThe patients with acute rejection have significantly high peripheral blood levels of CD61, CD63 and PAC-1 before transplantation, however, these values in patients with acute tubular necrosis are not high, this suggesting that acute rejection might relate to platelet activation, while acute tubular necrosis might not relate to it. After anticoagulants therapy in patients with acute rejection, the grafts function might recover faster and their one-year survival rates and grafts might be higher in those with CD61, CD63 and PAC-1 decreasing remarkably.
Adult ; Aged ; Antigens, CD ; blood ; Dual Specificity Phosphatase 2 ; Female ; Graft Rejection ; Humans ; Integrin beta3 ; blood ; Kidney ; physiopathology ; Kidney Transplantation ; Male ; Middle Aged ; Platelet Activation ; Platelet Membrane Glycoproteins ; Protein Phosphatase 2 ; Protein Tyrosine Phosphatases ; blood ; Tetraspanin 30
10.Crystal structure of a PP2A B56-BubR1 complex and its implications for PP2A substrate recruitment and localization.
Jiao WANG ; Zhizhi WANG ; Tingting YU ; Huan YANG ; David M VIRSHUP ; Geert J P L KOPS ; Sang Hyun LEE ; Weihong ZHOU ; Xin LI ; Wenqing XU ; Zihe RAO
Protein & Cell 2016;7(7):516-526
Protein phosphatase 2A (PP2A) accounts for the majority of total Ser/Thr phosphatase activities in most cell types and regulates many biological processes. PP2A holoenzymes contain a scaffold A subunit, a catalytic C subunit, and one of the regulatory/targeting B subunits. How the B subunit controls PP2A localization and substrate specificity, which is a crucial aspect of PP2A regulation, remains poorly understood. The kinetochore is a critical site for PP2A functioning, where PP2A orchestrates chromosome segregation through its interactions with BubR1. The PP2A-BubR1 interaction plays important roles in both spindle checkpoint silencing and stable microtubule-kinetochore attachment. Here we present the crystal structure of a PP2A B56-BubR1 complex, which demonstrates that a conserved BubR1 LxxIxE motif binds to the concave side of the B56 pseudo-HEAT repeats. The BubR1 motif binds to a groove formed between B56 HEAT repeats 3 and 4, which is quite distant from the B56 binding surface for PP2A catalytic C subunit and thus is unlikely to affect PP2A activity. In addition, the BubR1 binding site on B56 is far from the B56 binding site of shugoshin, another kinetochore PP2A-binding protein, and thus BubR1 and shugoshin can potentially interact with PP2A-B56 simultaneously. Our structural and biochemical analysis indicates that other proteins with the LxxIxE motif may also bind to the same PP2A B56 surface. Thus, our structure of the PP2A B56-BubR1 complex provides important insights into how the B56 subunit directs the recruitment of PP2A to specific targets.
Amino Acid Motifs
;
Binding Sites
;
Cell Cycle Proteins
;
chemistry
;
Crystallography, X-Ray
;
Humans
;
Multienzyme Complexes
;
chemistry
;
Protein Phosphatase 2
;
chemistry
;
Protein Structure, Quaternary
;
Protein-Serine-Threonine Kinases
;
chemistry