1.The interaction between genistein and beta-glucosidase.
Yao-Dong ZHANG ; Qun-Qun GAO ; Cai-Hong YU
Acta Pharmaceutica Sinica 2011;46(6):677-682
The interaction between genistein and beta-glucosidase was studied using fluorescence quenching method and synchronous fluorimetry. The binding reaction was simultaneously studied by the AutoDock 4.2 molecular docking model. Data from fluorescence spectroscopy indicated that these interactions resulted in the endogenous fluorescence quenching of beta-glucosidase, which belongs to a static quenching mechanism. The calculated binding constants were 3.69 x 10(4), 3.06 x 10(4) and 2.36 x 10(4) L x mol(-1) at 17, 27 and 37 degrees C, respectively. The evidences from synchronous fluorescence showed the effect of genistein on the microenvironment around beta-glucosidase in aqueous solution. The inhibition test showed that the activity of beta-glucosidase could be inhibited by genistein. The determined bimolecular rate constant (k(i)) was 1.2 x 10(3) (mol x L(-1)(-1) x min(-1). Molecular docking was performed to reveal the possible binding mode or mechanism and suggested that genistein could bind strongly to beta-glucosidase. The results revealed that genistein tended to bind with beta-glucosidase mainly by hydrogen bond and hydrophobic interaction as well as electrostatic forces.
Genistein
;
metabolism
;
Molecular Docking Simulation
;
Protein Binding
;
Protein Kinase Inhibitors
;
metabolism
;
Spectrometry, Fluorescence
;
beta-Glucosidase
;
metabolism
2.Advances in the study of inhibitors of kinases and nuclear factors for treating allergic asthma.
Ren-Ping LIU ; Ai-Min MENG ; Qi HOU
Acta Pharmaceutica Sinica 2012;47(6):689-695
Currently, about 300 million people worldwide are affected by asthma. Most of these sufferers inhale immunosuppressants (ie corticosteroids) and beta-adrenergic receptor agonists for their asthma treatment. However, about 5%-10% of patients of asthma have poor response to such treatment. Investigation of kinase signaling pathway and nuclear transcription factor as a target molecule in the treatment of allergic asthma has been the concern of scholars home and abroad. This paper reviewed inhibitors of kinase signaling pathway and nuclear transcription factors for the treatment of asthma.
Animals
;
Asthma
;
drug therapy
;
enzymology
;
Humans
;
Mitogen-Activated Protein Kinases
;
antagonists & inhibitors
;
Phosphatidylinositol 3-Kinase
;
antagonists & inhibitors
;
Protein Kinase Inhibitors
;
therapeutic use
;
Protein-Tyrosine Kinases
;
antagonists & inhibitors
;
metabolism
;
Signal Transduction
;
Transcription Factors
;
antagonists & inhibitors
3.Deoxyhypusine synthase is phosphorylated by protein kinase C in vivo as well as in vitro.
Kee Ryeon KANG ; Jee Sook KIM ; Soo Il CHUNG ; Myung Hee PARK ; Yeon Woong KIM ; Dong Kwon LIM ; So Young LEE
Experimental & Molecular Medicine 2002;34(6):489-495
Deoxyhypusine synthase catalyzes the first step in the posttranslational synthesis of an unusual amino acid, hypusine, in the eukaryotic translation initiation factor 5A (eIF-5A) precursor protein. We earlier observed that yeast recombinant deoxyhypusine synthase was phosphorylated by protein kinase C (PKC) in vitro (Kang and Chung, 1999) and the phosphorylation rate was synergistically increased to a 3.5-fold following treatment with phosphatidylserine (P.Ser)/diacylglycerol (DAG)/ Ca2+, suggesting a possible involvement of PKC. We have extended study on the phosphorylation of deoxyhypusine synthase in vivo in different cell lines in order to define its role on the regulation of eIF5A in the cell. Deoxyhypusine synthase was found to be phosphorylated by endogenous kinases in CHO, NIH3T3, and chicken embryonic cells. The highest degree of phosphorylation was found in CHO cells. Moreover, phosphorylation of deoxyhypusine synthase in intact CHO cells was revealed and the expression of phosphorylated deoxyhypusine synthase was significantly diminished by diacyl ethylene glycol (DAEG), a PKC inhibitor, and enhanced by phorbol 12-myristate 13-acetate (PMA) or Ca2+/DAG. Endogenous PKC in CHO cell and cell lysate was able to phosphorylate deoxyhypusine synthase and this modification is enhanced by PMA or Ca2+ plus DAG. Close association of PKC with deoxyhypusine synthase in the CHO cells was evident in the immune coprecipitation and was PMA-, and Ca2+/phospholipiddependent. These results suggest that phosphorylation of deoxyhypusine synthase was PKC-dependent cellular event and open a path for possible regulation in the interaction with eIF5A precursor for hypusine synthesis.
Amine Oxidoreductases/*metabolism
;
Animals
;
Cell Line
;
Chick Embryo
;
Female
;
Hamsters
;
Mice
;
Phosphorylation
;
Protein Binding
;
Protein Kinase C/antagonists & inhibitors/*metabolism
4.The research progress of Aurora-B kinase and its inhibitors.
Dan-Dan DONG ; Yan-Yan XIAO ; Wei LIU ; Hong-Gang ZHOU ; Cheng YANG
Acta Pharmaceutica Sinica 2013;48(4):457-465
Aurora-B as an important kinase to adjust the cell normal mitosis is a potent target for cancer treatment. Aurora-B is overexpressed in a broad range of tumor and tumor cells are more sensitive while Aurora-B is inhibited. Due to the key role of the Aurora-B in cell mitosis, the development of its inhibitors is becoming more and more important. Several small molecules inhibit with a similar efficacy both Aurora-A and Aurora-B, however, in most cases the effects resemble Aurora-B disruption by genetic methods, indicating that Aurora-B represents an effective therapeutic target. There were several Aurora-B kinase inhibitors which had entered the clinics and displayed good antitumor activity. In this review, we will outline the functions of Aurora kinase B in normal cell division and in malignancy. We will focus on recent preclinical and clinical studies that have explored the mechanism of action and clinical effect of Aurora-B inhibitors in cancer treatment.
Animals
;
Aurora Kinase B
;
antagonists & inhibitors
;
genetics
;
metabolism
;
Enzyme Activation
;
Humans
;
Mitosis
;
Neoplasms
;
drug therapy
;
Protein Kinase Inhibitors
;
pharmacology
;
therapeutic use
;
RNA, Messenger
;
metabolism
6.C-jun N-terminal kinase-mediated signaling is essential for Staphylococcus aureus-induced U937 apoptosis.
Jia-he WANG ; Bo YU ; Hui-yan NIU ; Hui LI ; Yi ZHANG ; Xin WANG ; Ping HE
Chinese Medical Sciences Journal 2009;24(1):26-29
OBJECTIVETo investigate the effect of SP600125, a specific c-jun N-terminal protein kinase (JNK) inhibitor, on Staphylococcus aureus (S. aureus)-induced U937 cell death and the underlying mechanism.
METHODSThe human monocytic U937 cells were treated with S. aureus at different time with or without SP600125. Cell apoptosis was analyzed by flow cytometry. JNK, Bax, and caspase-3 activities were detected by Western blotting.
RESULTSS. aureus induced apoptosis in cultured U937 cells in a time-dependent manner. Expression of Bax and phospho-JNK significantly increased in S. aureus-treated U937 cells, and the level of activated caspase-3 also increased in a time-dependent manner. Inhibition of JNK with SP600125 significantly inhibited S. aureus-induced apoptosis in U937 cells.
CONCLUSIONSS. aureus can induce apoptosis in U937 cells by phosphorylation of JNK and activation of Bax and caspase-3. SP600125 protects U937 cells from apoptosis induced by S. aureus via inhibiting the activity of JNK.
Anthracenes ; pharmacology ; Apoptosis ; physiology ; Caspase 3 ; metabolism ; Humans ; JNK Mitogen-Activated Protein Kinases ; metabolism ; Macrophages ; cytology ; metabolism ; microbiology ; Mitogen-Activated Protein Kinase 8 ; antagonists & inhibitors ; metabolism ; Mitogen-Activated Protein Kinase 9 ; antagonists & inhibitors ; metabolism ; Phosphorylation ; drug effects ; Protein Kinase Inhibitors ; pharmacology ; Signal Transduction ; physiology ; Staphylococcus aureus ; physiology ; U937 Cells ; bcl-2-Associated X Protein ; metabolism
7.Inhibitory effect and kinetic analysis of sodium quercetin-7,4'-disulphate on recombinant human protein kinase CK2 holoenzyme.
Xin-guang LIU ; Nian-ci LIANG ; Wen LIU ; Ji SHE ; Li-er MO
Acta Pharmaceutica Sinica 2002;37(3):165-168
AIMTo study the direct effect and kinetics of sodium quercetin-7,4'-disulphate (SQDS) on recombinant human protein kinase CK2 holoenzyme.
METHODSThe recombinant human CK2 holoenzyme activity was assayed by detecting incorporation of 32P of [gamma-32P] ATP into the substrate in various conditions.
RESULTSThe recombinant human CK2 was a second messenger (Ca2+, cAMP and cGMP) independent protein kinase. The characterization and function of the reconstituted holoenzyme were consistent with those of native CK2. SQDS was shown to strongly inhibit the holoenzyme activity of recombinant human protein kinase CK2 with an IC50 of 4.4 mumol.L-1, which was more effective than DRB and A3, known CK2 special inhibitors. Kinetic studies of SQDS on recombinant human CK2 showed: the inhibition was competitive with ATP and noncompetitive with casein.
CONCLUSIONSQDS is a potent inhibitor of protein kinase CK2. This study provide experimental basis for the development of more effective inhibitors of CK2 and for clinical application of SQDS in the future.
Casein Kinase II ; Dichlororibofuranosylbenzimidazole ; pharmacology ; Enzyme Inhibitors ; pharmacology ; Humans ; Kinetics ; Protein-Serine-Threonine Kinases ; antagonists & inhibitors ; metabolism ; Quercetin ; analogs & derivatives ; pharmacology ; Recombinant Proteins ; antagonists & inhibitors ; metabolism
8.Histone deacetylase inhibitor SAHA induces inactivation of MAPK signaling and apoptosis in HL-60 cells.
Ying WANG ; Sheng-Yu WANG ; Chun-Mei HOU ; Yuan-Ji XU ; Zhi-Yan DU ; Xiao-Dan YU
Journal of Experimental Hematology 2007;15(2):267-271
The study was aimed to investigate the molecular mechanisms of histone deacetylase inhibitor SAHA-induced apoptosis of acute myeloid leukemia cell line HL-60. The effect of SAHA on HL-60 cell proliferation was detected by MTT assay and the cell morphological changes were observed with Wright-Giemsa and Hoechst33342 staining. The cell cycle distribution was determined by flow cytometry and the expression of cell signaling proteins were detected by Western-blot analysis. The results showed that SAHA inhibited the proliferation of HL-60 cells in dose- and time-dependent manners, after 2 micromol/L SAHA exposure for 12 - 48 hours, the cell cycle was arrested at G(0)/G(1) phase and apoptotic cell death was confirmed by either defined apoptotic bodies stained by Hoechst33342, Western blot showed cleaved-PARP, which represents the activation of caspase 3. The Western blot analysis indicated the activation of two important survival signal pathways after SAHA treatment, the phosphorylation of Raf and its downstream ERK kinases were remarkable downregulated, whereas the phosphorylation of AKT and its downstream molecular mTOR were not changed. It is concluded that SAHA-induced apoptosis of HL-60 cells is mediated by inactivation of p44/42 MAPK signaling pathway.
Apoptosis
;
drug effects
;
HL-60 Cells
;
Histone Deacetylase Inhibitors
;
Humans
;
Hydroxamic Acids
;
pharmacology
;
MAP Kinase Signaling System
;
Mitogen-Activated Protein Kinase 1
;
metabolism
;
Mitogen-Activated Protein Kinase 3
;
metabolism
;
Mitogen-Activated Protein Kinases
;
metabolism
;
Signal Transduction
9.Toll-like receptor 9 dependent activation of MAPK and NF-kB is required for the CpG ODN-induced matrix metalloproteinase-9 expression.
Eun Jung LIM ; Sun Hye LEE ; Jin Gu LEE ; Jae Ryong KIM ; Sung Su YUN ; Suk Hwan BAEK ; ChuHee LEE
Experimental & Molecular Medicine 2007;39(2):239-245
Unmethylated CpG oligodeoxynucleotides (CpG ODNs) activate immune cells to produce immune mediators. This study demonstrates that in murine macrophage RAW 264.7 cells, CpG ODN-mediated matrix metalloproteinase-9 (MMP-9) expression is regulated at transcriptional level and requires de novo protein synthesis. Inhibition of ERK and p38 MAPK, but not JNK, results in significant decrease of CpG ODN-induced MMP-9 expression. We found that endosomal maturation inhibitors, chloroquine and bafilomycin A, block CpG ODN-induced ERK and p38 MAPK activation and the subsequent MMP-9 expression. We also observed that CpG ODN induces NF-kappa B activation and NF-kappa B is a downstream target of p38 MAPK. Taken together, our data demonstrate that CpG ODN triggers MMP-9 expression via TLR-9 dependent ERK and p38 MAPK activation followed by NF-kappa B activation.
Animals
;
Cell Line
;
Enzyme Activation/drug effects
;
Enzyme Induction/drug effects
;
Matrix Metalloproteinase 9/*biosynthesis
;
Mice
;
Mitogen-Activated Protein Kinase 1/antagonists & inhibitors/metabolism
;
Mitogen-Activated Protein Kinase 3/antagonists & inhibitors/metabolism
;
Mitogen-Activated Protein Kinases/*metabolism
;
NF-kappa B/*metabolism
;
Oligodeoxyribonucleotides/*pharmacology
;
Signal Transduction/drug effects
;
Toll-Like Receptor 9/antagonists & inhibitors/*metabolism
;
p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors/metabolism
10.Research progress of p70 ribosomal protein S6 kinase inhibitors.
Zhi-jun TU ; Gao-yun HU ; Qian-bin LI
Acta Pharmaceutica Sinica 2015;50(3):261-271
p70 ribosomal protein S6 kinase (p70S6K), an important member of AGC family, is a kind of multifunctional Ser/Thr kinases, which plays an important role in mTOR signaling cascade. The p70 ribosomal protein S6 kinase is closely associated with diverse cellular processes such as protein synthesis, mRNA processing, glucose homeostasis, cell growth and apoptosis. Recent studies have highlighted the important role of S6K in cancer, which arose interests of scientific researchers for the design and discovery of anti-cancer agents. Herein, the mechanisms of S6K and available inhibitors are reviewed.
Antineoplastic Agents
;
Humans
;
Protein Kinase Inhibitors
;
chemistry
;
Ribosomal Protein S6 Kinases, 70-kDa
;
antagonists & inhibitors
;
metabolism
;
Signal Transduction
;
TOR Serine-Threonine Kinases