1.The activity of M-phase promoting factor in oral normal tissue and tumor.
Yi LIU ; Yulou TIAN ; Aiming YU ; Ying LIU ; Zhihong ZONG ; Bingzhi YU
Chinese Journal of Stomatology 2002;37(2):123-125
OBJECTIVETo investigate the content and activity of M-phase promoting factor (MPF) in pleomorphic adenoma, mucoepidermoid carcinoma, buccal carcinoma and normal tissue, in order to evaluate the role of MPF in the development of tumor and the relationship between MPF and malignant degree.
METHODSThe content and activity of MPF were assessed by immunobloting and Gollicano method.
RESULTSThe cdc2 and cyclinB (two subunits of MPF) were found both in normal and tumor tissues, and their content in tumor was higher than normal tissues. Buccal carcinoma was 64% higher than normal tissues. The activity of MPF in carcinoma was higher than normal tissue and had positive relation with the malignant extent.
CONCLUSIONSThe content and activity of MPF in tumor are higher than normal tissue. PKC can activate MPF. These results show PKC may promote tumor proliferation by activating MPF and also, the activity of MPF has some relation with malignant extent.
CDC2 Protein Kinase ; analysis ; Cyclin B ; analysis ; Humans ; Immunoblotting ; Maturation-Promoting Factor ; analysis ; Mouth ; chemistry ; Mouth Neoplasms ; chemistry ; Protein Kinase C ; physiology
2.Proteome Analysis of Alkylhydroxide Peroxidase-Deficient Isogenic Mutant of Helicobacter pylori 26695
Woo Kon LEE ; Seung Chul BAIK ; Min Kyung SHIN ; Myunghwan JUNG ; Jin Sik PARK ; Jong Hoon HA ; Dong Hae LEE ; Min Jeong KIM ; Jeong ih SHIN ; Hyung Lyun KANG
Journal of Bacteriology and Virology 2019;49(4):191-202
In order to investigate the antioxidant effect of alkylhydroxide peroxidase (ahpC) of Helicobacter pylori (H. pylori) 26695, an ahpC-deficient mutant (H. pylori 26695 ahpC::cat) was generated. ahpC-deficient mutant was grown slowly at lower pressure of oxygen (5% oxygen) compared to the H. pylori 26695. Whole cell proteins isolated form H. pylori 26695 and H. pylori 26695 ahpC::cat were analyzed by MALDI-TOF and tandem-MS. The expression of 15 proteins, including Ppa, HypB, GrpE, Elp, RecA, GroES, Mda66, RibE, NapA, GlnA, BioB, TrxB, Tsf, FumC and Icd, was more than doubled in H. pylori 26695 ahpC::cat. Production of 10 proteins such as UreG, FabE, Adk, Pnp, OorC, AtpA, AtpD, Nqq3, Pfr, and TagD decreased below 50% in H. pylori 26695 ahpC::cat compared to the H. pylori 26695. In microarray analysis, 9 genes including sul1, amiE, frxA, fecA, hyuA, and katA increased in transcription level in H. pylori 26695 ahpC::cat compared to H. pylori 26695. A total of 24 genes, including flaB, protein kinase C inhibitor, cag16, pabC, and sabA, reduced in transcription. 27 genes, including HP0889, showed common expression changes in ahpC, katA, and sodB-deficient mutations. As a result of this study, there were not many genes whose expression was commonly changed by the deletion of each of the three major antioxidant enzymes of H. pylori. These results showed the functions and regulation of the three antioxidant enzymes were different in H. pylori.
Antioxidants
;
Helicobacter pylori
;
Helicobacter
;
Microarray Analysis
;
Oxygen
;
Peroxidase
;
Protein Kinase C
;
Proteome
;
Ribes
3.Cell type-specific upregulation of myristoylated alanine-rich C kinase substrate and protein kinase C-alpha, -beta I, -beta II, and -delta in microglia following kainic acid-induced seizures.
Su Yong EUN ; Eun Hae KIM ; Kee Seok KANG ; Hwa Jung KIM ; Sangmee Ahn JO ; Soon Jong KIM ; Su Hyun JO ; Sang Jeong KIM ; Perry J BLACKSHEAR ; Jun KIM
Experimental & Molecular Medicine 2006;38(3):310-319
Myristoylated alanine-rich C kinase substrate (MARCKS) is a widely distributed protein kinase C (PKC) substrate and has been implicated in actin cytoskeletal rearrangement in response to extracellular stimuli. Although MARCKS was extensively examined in various cell culture systems, the physiological function of MARCKS in the central nervous system has not been clearly understood. We investigated alterations of cellular distribution and phosphorylation of MARCKS in the hippocampus following kainic acid (KA)-induced seizures. KA (25 mg/kg, i.p.) was administered to eight to nine week-old C57BL/6 mice. Behavioral seizure activity was observed for 2 h after the onset of seizures and was terminated with diazepam (8 mg/kg, i.p.). The animals were sacrificed and analyzed at various points in time after the initiation of seizure activity. Using double-labeling immunofluorescence analysis, we demonstrated that the expression and phosphorylation of MARCKS was dramatically upregulated specifically in microglial cells after KA-induced seizures, but not in other types of glial cells. PKC alpha, beta I, beta II and delta, from various PKC isoforms examined, also were markedly upregulated, specifically in microglial cells. Moreover, immunoreactivities of phosphorylated MARCKS were co-localized in the activated microglia with those of the above isoforms of PKC. Taken together, our in vivo data suggest that MARCKS is closely linked to microglial activation processes, which are important in pathological conditions, such as neuroinflammation and neurodegeneration.
Up-Regulation/drug effects
;
Time Factors
;
Seizures/chemically induced/*metabolism
;
Protein Kinase C-delta/analysis
;
Protein Kinase C-alpha/analysis
;
Protein Kinase C/*analysis
;
Protein Biosynthesis/drug effects
;
Phosphorylation/drug effects
;
Microscopy, Confocal
;
Microglia/cytology/drug effects/*metabolism
;
Mice, Inbred C57BL
;
Mice
;
Membrane Proteins/*analysis/metabolism
;
Kainic Acid/*toxicity
;
Isoenzymes/analysis
;
Intracellular Signaling Peptides and Proteins/*analysis/metabolism
;
Immunohistochemistry
;
Animals
4.Molecular assembly of mitogen-activated protein kinase module in ras-transformed NIH3T3 cell line.
Ki Sook PARK ; Jin Ah KIM ; Kyong Ja CHAI
Experimental & Molecular Medicine 2000;32(3):120-126
The ras, is a G-like protein that controls the mitogen-activated protein kinase (MAPK) pathway involved in control and differentiation of cell growth. MAPK is a key component of its signaling pathway and the aberrant activation may play an important role in the transformation process. To better understand roles of ras in the activation of MAPKs, we have established ras transformed NIH3T3 fibroblast cell line, and analyzed the MAPK module. The ras transformed cells formed numerous spikes at the edges of cells and showed loss of contact inhibition. The levels of ERK1/2 MAPKs as revealed by Western blot analysis were not significantly different between ras transformed and non-transformed cells. However, phosphorylation of ERK MAPKs and the level of MEK were significantly increased although the heavily expressed level of Raf-1, an upstream component of MAPK pathway was unchanged in ras transformed NIH3T3 cells. The sedimentation profile of the MAPK module kinases in a glycerol gradient showed the presence of a rather homogeneous species of multimeric forms of ERK1/2 and MEK as indicated by the narrow distribution peak areas. The broad sedimentation profile of the Raf-1 in a glycerol gradient may suggest possible heterologous protein complexes but the identification of interacting molecules still remains to be identified in order to understand the organization of the MAPK signal transduction pathway.
3T3 Cells
;
Animal
;
Cell Transformation, Neoplastic*
;
Genes, ras*
;
Mice
;
Mitogen-Activated Protein Kinase Kinases/analysis
;
Mitogen-Activated Protein Kinases/analysis
;
Phosphorylation
;
Protein-Serine-Threonine Kinases/analysis*
;
Proto-Oncogene Proteins c-raf/analysis
;
p42 MAP Kinase/analysis
5.Sequence Analysis and Potential Action of Eukaryotic Type Protein Kinase from Streptomyces coelicolor A3(2).
Daisy R ROY ; Sathees B C CHANDRA
Genomics & Informatics 2008;6(1):44-49
Protein kinase C (PKC) is a family of kinases involved in the transduction of cellular signals that promote lipid hydrolysis. PKC plays a pivotal role in mediating cellular responses to extracellular stimuli involved in proliferation, differentiation and apoptosis. Comparative analysis of the PKC-alpha, beta, epsilon isozymes of 200 recently sequenced microbial genomes was carried out using variety of bioinformatics tools. Diversity and evolution of PKC was determined by sequence alignment. The ser/thr protein kinases of Streptomyces coelicolor A3 (2), is the only bacteria to show sequence alignment score greater than 30% with all the three PKC isotypes in the sequence alignment. S.coelicolor is the subject of our interest because it is notable for the production of pharmaceutically useful compounds including anti-tumor agents, immunosupressants and over two-thirds of all natural antibiotics currently available. The comparative analysis of three human isotypes of PKC and Serine/threonine protein kinase of S.coelicolor was carried out and possible mechanism of action of PKC was derived. Our analysis indicates that Serine/ threonine protein kinase from S. coelicolor can be a good candidate for potent anti-tumor agent. The presence of three representative isotypes of the PKC super family in this organism helps us to understand the mechanism of PKC from evolutionary perspective.
Anti-Bacterial Agents
;
Apoptosis
;
Bacteria
;
Computational Biology
;
Genome
;
Humans
;
Hydrolysis
;
Isoenzymes
;
Negotiating
;
Phosphotransferases
;
Protein Kinase C
;
Protein Kinases
;
Sequence Alignment
;
Sequence Analysis
;
Streptomyces
;
Streptomyces coelicolor
;
Threonine
6.Sequence Analysis and Potential Action of Eukaryotic Type Protein Kinase from Streptomyces coelicolor A3(2).
Daisy R ROY ; Sathees B C CHANDRA
Genomics & Informatics 2008;6(1):44-49
Protein kinase C (PKC) is a family of kinases involved in the transduction of cellular signals that promote lipid hydrolysis. PKC plays a pivotal role in mediating cellular responses to extracellular stimuli involved in proliferation, differentiation and apoptosis. Comparative analysis of the PKC-alpha, beta, epsilon isozymes of 200 recently sequenced microbial genomes was carried out using variety of bioinformatics tools. Diversity and evolution of PKC was determined by sequence alignment. The ser/thr protein kinases of Streptomyces coelicolor A3 (2), is the only bacteria to show sequence alignment score greater than 30% with all the three PKC isotypes in the sequence alignment. S.coelicolor is the subject of our interest because it is notable for the production of pharmaceutically useful compounds including anti-tumor agents, immunosupressants and over two-thirds of all natural antibiotics currently available. The comparative analysis of three human isotypes of PKC and Serine/threonine protein kinase of S.coelicolor was carried out and possible mechanism of action of PKC was derived. Our analysis indicates that Serine/ threonine protein kinase from S. coelicolor can be a good candidate for potent anti-tumor agent. The presence of three representative isotypes of the PKC super family in this organism helps us to understand the mechanism of PKC from evolutionary perspective.
Anti-Bacterial Agents
;
Apoptosis
;
Bacteria
;
Computational Biology
;
Genome
;
Humans
;
Hydrolysis
;
Isoenzymes
;
Negotiating
;
Phosphotransferases
;
Protein Kinase C
;
Protein Kinases
;
Sequence Alignment
;
Sequence Analysis
;
Streptomyces
;
Streptomyces coelicolor
;
Threonine
7.Effect of SH2A gene in cell signal transduction and its subcellular locolization.
Qian DING ; Yan-yan ZHAO ; Zhi-jun SUN ; Da-hai YU
Chinese Journal of Medical Genetics 2003;20(6):499-503
OBJECTIVETo examine the effect of SH2A gene in cell signal transduction and its subcellular localization.
METHODSRT-PCR method was used to amplify the coding sequence of SH2A gene. Eukaryotic recombined expression vector pcDNA 3.1-SH2A was constructed, and then Bel7402 cell and COS7 cell transfected by liposome. Multiple kinase assay was performed to examine the activity of protein kinase (PKC), mitogen activated protein kinase (MAPK), tyrosine protein kinase (TPK) in the transfected cells. Meantime, pEGFP-SH2A vector was also constructed and the cells transfected with it were examined by fluorescent microscopy.
RESULTSRecombined expression vector pcDNA3.2-SH2A and pEGFP-SH2A contained the coding sequence of SH2A cDNA. In both cell lines expressing SH2A gene, the cytoplasm PKC activity decreased by 40% or so, but no apparent alteration was found in MAPK and TPK activity. SH2A gene was found localized in the cytoplasm of transfected cells under fluorescent microscope.
CONCLUSIONSH2A gene may act as an inhibiting factor in PKC signal transduction, and it is localized in cytoplasm.
Animals ; COS Cells ; Cytoplasm ; chemistry ; Humans ; Membrane Proteins ; analysis ; genetics ; physiology ; Mitogen-Activated Protein Kinases ; metabolism ; Protein Kinase C ; physiology ; Signal Transduction ; physiology ; Transfection
8.Expression of protein kinase C isoforms in retinoic acid-induced differentiation of mouse embryonic stem cells into neuron-like cells.
Qian-Ying GAO ; Jun-Shu WU ; Zhi-Chong WANG ; Jian GE ; Dan-Ping HUANG
Chinese Medical Journal 2007;120(18):1639-1642
Animals
;
Blotting, Western
;
Cell Differentiation
;
drug effects
;
Embryonic Stem Cells
;
cytology
;
enzymology
;
Isoenzymes
;
analysis
;
Mice
;
Neurons
;
enzymology
;
Protein Kinase C
;
analysis
;
Tretinoin
;
pharmacology
9.PKC alpha induces differentiation through ERK1/2 phosphorylation in mouse keratinocytes.
Haeng Ran SEO ; Yoo Wook KWAN ; Chul Koo CHO ; Sangwoo BAE ; Su Jae LEE ; Jae Won SOH ; Hee Yong CHUNG ; Yun Sil LEE
Experimental & Molecular Medicine 2004;36(4):292-299
Epidermal keratinocyte differentiation is a tightly regulated stepwise process that requires protein kinase C (PKC) activation. Studies on cultured mouse keraitnocytes induced to differentiate with Ca2+ have indirectly implicated the involvement of PKC alpha isoform. When PKC alpha was overexpressed in undifferentiated keratinocytes using adenoviral system, expressions of differentiation markers such as loricrin, filaggrin, keratin 1 (MK1) and keratin 10 (MK10) were increased, and ERK1/2 phosphorylation was concurrently induced without change of other MAPK such as p38 MAPK and JNK1/2. Similarly, transfection of PKC alphakinase active mutant (PKC alpha- CAT) in the undifferentiated keratinocyte, but not PKC beta-CAT, also increased differentiation marker expressions. On the other hand, PKC alphadominant negative mutant (PKC beta-KR) reduced Ca2+ -mediated differentiation marker expressions, while PKC beta-KR did not, suggesting that PKC alphais responsible for keratinocyte differentiation. When downstream pathway of PKC alphain Ca2+ - mediated differentiation was examined, ERK1/2, p38 MAPK and JNK1/2 phosphorylations were increased by Ca2+ shift. Treatment of keratinocytes with PD98059, MEK inhibitor, and SB20358, p38 MAPK inhibitor, before Ca2+ shift induced morphological changes and reduced expressions of differentiation markers, but treatment with SP60012, JNK1/2 inhibitor, did not change at all. Dominant negative mutants of ERK1/2 and p38 MAPK also inhibited the expressions of differentiation marker expressions in Ca2+ shifted cells. The above results indicate that both ERK1/2 and p38 MAPK may be involved in Ca2+- mediated differentiation, and that only ERK1/2 pathway is specific for PKCa-mediated differentiation in mouse keratinocytes.
Animals
;
Calcium/pharmacology/physiology
;
Cell Differentiation/physiology
;
Intermediate Filament Proteins/analysis/metabolism
;
Keratinocytes/cytology/*enzymology
;
Membrane Proteins/analysis/metabolism
;
Mice
;
Mitogen-Activated Protein Kinase 1/*metabolism
;
Mitogen-Activated Protein Kinase 3/*metabolism
;
Phosphorylation
;
Protein Kinase C/genetics/*physiology
;
Research Support, Non-U.S. Gov't
;
p38 Mitogen-Activated Protein Kinases/metabolism
10.Changes in gene expression associated with oocyte meiosis after Obox4 RNAi.
Hyun Seo LEE ; Eun Young KIM ; Kyung Ah LEE
Clinical and Experimental Reproductive Medicine 2011;38(2):68-74
OBJECTIVE: Previously, we found that oocyte specific homeobox (Obox) 4 plays significant role in completion of meiosis specifically at meiosis I-meiosis II (MI-MII) transition. The purpose of this study was to determine the mechanism of action of Obox4 in oocyte maturation by evaluating downstream signal networking. METHODS: The Obox4 dsRNA was prepared by in vitro transcription and microinjected into the cytoplasm of germinal vesicle oocytes followed by in vitro maturation in the presence or absence of 0.2 mM 3-isobutyl-1-metyl-xanthine. Total RNA was extracted from 200 oocytes of each group using a PicoPure RNA isolation kit then amplified two-rounds. The probe hybridization and data analysis were used by Affymetrix GeneChip(R) Mouse Genome 430 2.0 array and GenPlex 3.0 (ISTECH, Korea) software, respectively. RESULTS: Total 424 genes were up (n=80) and down (n=344) regulated after Obox4 RNA interference (RNAi). Genes mainly related to metabolic pathways and mitogen-activated protein kinase (MAPK) signaling pathway was changed. Among the protein kinase C (PKC) isoforms, PKC-alpha, beta, gamma were down-regulated and especially the MAPK signaling pathway PKC-gamma was dramatically decreased by Obox4 RNAi. In the cell cycle pathway, we evaluated the expression of genes involved in regulation of chromosome separation, and found that these genes were down-regulated. It may cause the aberrant chromosome segregation during MI-MII transition. CONCLUSION: From the results of this study, it is concluded that Obox4 is important upstream regulator of the PKC and anaphase-promoting complex action for maintaining intact germinal vesicle.
Animals
;
Cell Cycle
;
Chimera
;
Chromosome Segregation
;
Cytoplasm
;
Gene Expression
;
Genes, Homeobox
;
Genome
;
Meiosis
;
Metabolic Networks and Pathways
;
Mice
;
Microarray Analysis
;
Oocytes
;
Protein Isoforms
;
Protein Kinase C
;
Protein Kinases
;
RNA
;
RNA Interference
;
Statistics as Topic
;
Ubiquitin-Protein Ligase Complexes