1.Oligodendrocyte Precursor Cell-Specific HMGB1 Knockout Reduces Immune Cell Infiltration and Demyelination in Experimental Autoimmune Encephalomyelitis Models.
Gyuree KIM ; JiHye SEO ; Bokyung KIM ; Young-Ho PARK ; Hong Jun LEE ; Fuzheng GUO ; Dong-Seok LEE
Neuroscience Bulletin 2025;41(7):1145-1160
Infiltration and activation of peripheral immune cells are critical in the progression of multiple sclerosis and its experimental animal model, experimental autoimmune encephalomyelitis (EAE). This study investigates the role of high mobility group box 1 (HMGB1) in oligodendrocyte precursor cells (OPCs) in modulating pathogenic T cells infiltrating the central nervous system through the blood-brain barrier (BBB) by using OPC-specific HMGB1 knockout (KO) mice. We found that HMGB1 released from OPCs promotes BBB disruption, subsequently allowing increased immune cell infiltration. The migration of CD4+ T cells isolated from EAE-induced mice was enhanced when co-cultured with OPCs compared to oligodendrocytes (OLs). OPC-specific HMGB1 KO mice exhibited lower BBB permeability and reduced immune cell infiltration into the CNS, leading to less damage to the myelin sheath and mitigated EAE progression. CD4+ T cell migration was also reduced when co-cultured with HMGB1 knock-out OPCs. Our findings reveal that HMGB1 secretion from OPCs is crucial for regulating immune cell infiltration and provides insights into the immunomodulatory function of OPCs in autoimmune diseases.
Animals
;
Encephalomyelitis, Autoimmune, Experimental/metabolism*
;
HMGB1 Protein/deficiency*
;
Mice, Knockout
;
Oligodendrocyte Precursor Cells/immunology*
;
Mice, Inbred C57BL
;
CD4-Positive T-Lymphocytes/immunology*
;
Cell Movement
;
Blood-Brain Barrier/immunology*
;
Mice
;
Myelin Sheath/pathology*
;
Disease Models, Animal
;
Coculture Techniques
;
Oligodendroglia/metabolism*
;
Female
;
Cells, Cultured
2.The effect of vitamin D on sperm motility and the underlying mechanism.
Kadiliya JUERAITETIBAIKE ; Zheng DING ; Dan-Dan WANG ; Long-Ping PENG ; Jun JING ; Li CHEN ; Xie GE ; Xu-Hua QIU ; Bing YAO
Asian Journal of Andrology 2019;21(4):400-407
Vitamin D deficiency is a common health issue around the world. We therefore evaluated the associations of semen quality with both serum and seminal plasma vitamin D levels and studied the mechanisms underlying these by incubating spermatozoa with 1,25(OH)2D In vitro. Two hundred and twenty-two men were included in our study. Vitamin D was detected using an electrochemiluminescence method. Spermatozoa used for In vitro experiments were isolated by density gradient centrifugation. Positive relationships of serum 25(OH)D with semen volume and seminal plasma fructose were identified. Seminal plasma 25(OH)D level showed no relationship with serum 25(OH)D level, while it was inversely associated with sperm concentration and positively correlated with semen volume and sperm kinetic values. In vitro, sperm kinetic parameters increased after incubation with 1,25(OH)2D, especially upon incubation for 30 min with it at a concentration of 0.1 nmol l-1. Under these incubation conditions, the upward migration of spermatozoa increased remarkably with increasing adenosine triphosphate (ATP) concentration. The concentration of cyclic adenosine monophosphate (cAMP) and the activity of protein kinase A (PKA) were both elevated, and the PKA inhibitor, N-[2-(p-Bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide dihydrochloride (H89) reversed the increase of ATP production. The concentrations of cytoplasmic calcium ions and nicotinamide adenine dinucleotide (NADH) were both enhanced, while mitochondrial calcium uniporter (MCU) inhibitor, Ruthenium 360 (Ru360) did not reverse the increase of ATP production. Therefore, seminal plasma vitamin D may be involved in regulating sperm motility, and 1,25(OH)2D may enhance sperm motility by promoting the synthesis of ATP both through the cAMP/PKA pathway and the increase in intracellular calcium ions.
Adenosine Triphosphate/metabolism*
;
Adult
;
Calcium/metabolism*
;
Cyclic AMP/metabolism*
;
Cyclic AMP-Dependent Protein Kinases/metabolism*
;
Humans
;
Male
;
Semen/metabolism*
;
Semen Analysis
;
Signal Transduction/physiology*
;
Sperm Motility/physiology*
;
Spermatozoa/metabolism*
;
Vitamin D/pharmacology*
;
Vitamin D Deficiency/blood*
;
Wit and Humor as Topic
;
Young Adult
3.TRIM56 Suppresses Multiple Myeloma Progression by Activating TLR3/TRIF Signaling
Ying CHEN ; Jing ZHAO ; Dengzhe LI ; Jinxia HAO ; Pengcheng HE ; Huaiyu WANG ; Mei ZHANG
Yonsei Medical Journal 2018;59(1):43-50
PURPOSE: Tripartite-motif-containing protein 56 (TRIM56) has been found to exhibit a broad antiviral activity, depending upon E3 ligase activity. Here, we attempted to evaluate the function of TRIM56 in multiple myeloma (MM) and its underlying molecular basis. MATERIALS AND METHODS: TRIM56 expression at the mRNA and protein level was measured by qRT PCR and western blot analysis. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and flow cytometry analysis was performed to investigate the effect of TRIM56 on MM cell proliferation and apoptosis. The concentrations of interferon (IFN)-β, interleukin (IL)-6, and tumor necrosis factor-α in MM cell culture supernatants were detected with respective commercial ELISA kits. Western blot was employed to determine the effect of TRIM56 on toll-like receptor 3 (TLR3)/toll-IL-1 receptor (TIR) domain-containing adaptor inducing IFN-β (TRIF) signaling pathway. RESULTS: TRIM56 expression was prominently decreased in MM cells. Poly (dA:dT)-induced TRIM56 overexpression in U266 cells suppressed proliferation, induced apoptosis, and enhanced inflammatory cytokine production, while TRIM56 knockdown improved growth, diminished apoptosis, and inhibited inflammatory cytokine secretion in RPMI8226 cells. Moreover, TRIM56 knockdown blocked TLR3 signaling pathway. Furthermore, poly (I:C), a TLR3 agonist, markedly abolished TRIM56 depletion-induced increase of proliferation, decrease of apoptosis, and reduction of inflammatory factor in MM cells. CONCLUSION: TRIM56 may act as a tumor suppressor in MM through activation of TLR3/TRIF signaling pathway, contributing to a better understanding of the molecular mechanism of TRIM56 involvement in MM pathogenesis and providing a promising therapy strategy for patients with MM.
Adaptor Proteins, Vesicular Transport/metabolism
;
Apoptosis/drug effects
;
Cell Line, Tumor
;
Cell Proliferation/drug effects
;
Cytokines/secretion
;
Disease Progression
;
Down-Regulation/drug effects
;
Gene Knockdown Techniques
;
Humans
;
Multiple Myeloma/metabolism
;
Multiple Myeloma/pathology
;
Poly I-C/pharmacology
;
Signal Transduction/drug effects
;
Toll-Like Receptor 3/metabolism
;
Tripartite Motif Proteins/deficiency
;
Tripartite Motif Proteins/metabolism
;
Ubiquitin-Protein Ligases/deficiency
;
Ubiquitin-Protein Ligases/metabolism
4.Expression of G-protein coupled estrogen receptor in the testis of the male mouse with kidney yin or kidney yang deficiency and its impact on the reproductive function of the mouse.
A-Qing LIU ; Jing MA ; Hai-Jun DONG ; Liang CAO ; Cheng-Ming JIA ; Chang-Bo CHEN ; Ying-Qi LI
National Journal of Andrology 2018;24(2):156-162
Objective:
To investigate the expression of the G-protein coupled estrogen receptor (GPER) in the testis of the male mouse with kidney yin or kidney yang deficiency and its influence on the reproductive function of the mouse.
METHODS:
We randomized 30 six-week-old male Kunming mice into three groups of equal number: kidney yang deficiency, kidney yin deficiency, and normal control, and established the models of kidney yang deficiency and kidney yin deficiency by peritoneal injection of hydrocortisone at 50 mg/kg for 5 days and 25 mg/kg for 10 days, respectively. We observed the behavioral changes of the mice using the elevated plus-maze, exhaustive swimming and field experiment, examined the semen quality with the automatic sperm quality analyzer, calculated the average number of the offspring, measured the serum testosterone (T) and estradiol (E2) levels and T/E2 ratio by Roche electrochemiluminescence assay, and determined the localization and expression of GPER in the testis by immunohistochemistry and immunofluorescence staining.
RESULTS:
Compared with the mice with kidney yin deficiency, those with kidney yang deficiency showed remarkably fewer entries into the open arm and central area (P <0.05) and shorter time of exhaustive swimming (P <0.05), but no statistically significant difference in the time spent in the open arm or the central area (P >0.05); the latter group also exhibited significant decreases in the epididymal sperm count ([7.27 ± 1.30] vs [3.05 ± 1.06] ×108/g, P <0.01), sperm motility ([54.15 ± 13.52] vs [51.57 ± 8.75] %, P <0.01) and average number of the offspring (6.46 vs 4.33, P <0.05), a slight increase in the rate of morphologically abnormal sperm ([13.42 ± 2.32] vs [15.39 ± 2.48] %, P >0.05), and markedly reduced serum T ([24.96 ± 6.18] vs [16.72 ± 5.92] ng/dl,P <0.05), E2 ([19.81 ± 4.01] vs [15.24 ± 1.11] pg/ml,P <0.05) and T/E2 ratio (1.41 vs 1.25, P <0.05). The expression of GPER was found in the cytoplasm of the Leydig cells, negative in the nuclei and cell membrane, significantly higher in the kidney yang than in the kidney yin deficiency group (P <0.05).
CONCLUSIONS
The numbers of sperm and offspring decreased while the percentage of morphologically abnormal sperm increased in both the kidney yang and kidney yin deficiency mice, even more significantly in the former, which might be associated with the up-regulated expression of GPER in the testis of the mouse with kidney yang deficiency and consequently the reduced serum T level and T/E2 ratio.
Animals
;
Drugs, Chinese Herbal
;
Kidney Diseases
;
metabolism
;
Male
;
Mice
;
Random Allocation
;
Receptors, Estrogen
;
metabolism
;
Receptors, G-Protein-Coupled
;
metabolism
;
Reproduction
;
physiology
;
Semen Analysis
;
Testis
;
metabolism
;
Yang Deficiency
;
metabolism
;
Yin Deficiency
;
metabolism
5.Microarray Analysis of Gene Expression Changes in Neuroplastin 65-Knockout Mice: Implications for Abnormal Cognition and Emotional Disorders.
Huanhuan LI ; Jiujiang ZENG ; Liang HUANG ; Dandan WU ; Lifen LIU ; Yutong LIU ; Qionglan YUAN
Neuroscience Bulletin 2018;34(5):779-788
Neuroplastin 65 (Np65) is an immunoglobulin superfamily cell adhesion molecule involved in synaptic formation and plasticity. Our recent study showed that Np65-knockout (KO) mice exhibit abnormal cognition and emotional disorders. However, the underlying mechanisms remain unclear. In this study, we found 588 differentially-expressed genes in Np65-KO mice by microarray analysis. RT-PCR analysis also revealed the altered expression of genes associated with development and synaptic structure, such as Cdh1, Htr3a, and Kcnj9. In addition, the expression of Wnt-3, a Wnt protein involved in development, was decreased in Np65-KO mice as evidenced by western blotting. Surprisingly, MRI and DAPI staining showed a significant reduction in the lateral ventricular volume of Np65-KO mice. Together, these findings suggest that ablation of Np65 influences gene expression, which may contribute to abnormal brain development. These results provide clues to the mechanisms underlying the altered brain functions of Np65-deficient mice.
Affective Symptoms
;
metabolism
;
Animals
;
Brain
;
diagnostic imaging
;
metabolism
;
pathology
;
Cognition Disorders
;
metabolism
;
Gene Expression
;
Magnetic Resonance Imaging
;
Membrane Glycoproteins
;
deficiency
;
genetics
;
physiology
;
Mice, Knockout
;
Microarray Analysis
;
Organ Size
;
Real-Time Polymerase Chain Reaction
;
Wnt3 Protein
;
metabolism
6.Sex-Dependent Glial Signaling in Pathological Pain: Distinct Roles of Spinal Microglia and Astrocytes.
Gang CHEN ; Xin LUO ; M Yawar QADRI ; Temugin BERTA ; Ru-Rong JI
Neuroscience Bulletin 2018;34(1):98-108
Increasing evidence suggests that spinal microglia regulate pathological pain in males. In this study, we investigated the effects of several microglial and astroglial modulators on inflammatory and neuropathic pain following intrathecal injection in male and female mice. These modulators were the microglial inhibitors minocycline and ZVEID (a caspase-6 inhibitor) and the astroglial inhibitors L-α-aminoadipate (L-AA, an astroglial toxin) and carbenoxolone (a connexin 43 inhibitor), as well as U0126 (an ERK kinase inhibitor) and D-JNKI-1 (a c-Jun N-terminal kinase inhibitor). We found that spinal administration of minocycline or ZVEID, or Caspase6 deletion, reduced formalin-induced inflammatory and nerve injury-induced neuropathic pain primarily in male mice. In contrast, intrathecal L-AA reduced neuropathic pain but not inflammatory pain in both sexes. Intrathecal U0126 and D-JNKI-1 reduced neuropathic pain in both sexes. Nerve injury caused spinal upregulation of the astroglial markers GFAP and Connexin 43 in both sexes. Collectively, our data confirmed male-dominant microglial signaling but also revealed sex-independent astroglial signaling in the spinal cord in inflammatory and neuropathic pain.
2-Aminoadipic Acid
;
toxicity
;
Animals
;
Anti-Inflammatory Agents
;
therapeutic use
;
Astrocytes
;
pathology
;
Carbenoxolone
;
pharmacology
;
Caspase 6
;
deficiency
;
metabolism
;
Connexin 43
;
metabolism
;
Disease Models, Animal
;
Dose-Response Relationship, Drug
;
Enzyme Inhibitors
;
pharmacology
;
Female
;
Glial Fibrillary Acidic Protein
;
metabolism
;
Male
;
Mice
;
Mice, Transgenic
;
Microglia
;
pathology
;
Minocycline
;
therapeutic use
;
Neuralgia
;
chemically induced
;
drug therapy
;
pathology
;
Pain Measurement
;
Phenylurea Compounds
;
pharmacology
;
Sex Characteristics
;
Spinal Cord
;
pathology
;
Time Factors
7.Antithrombin deficiency and decreased protein C activity in a young man with venous thromboembolism: a case report.
Dong WANG ; Min TIAN ; Guanglin CUI ; Dao Wen WANG
Frontiers of Medicine 2018;12(3):319-323
Antithrombin and protein C are two crucial members in the anticoagulant system and play important roles in hemostasis. Mutations in SERPINC1 and PROC lead to deficiency or dysfunction of the two proteins, which could result in venous thromboembolism (VTE). Here, we report a Chinese 22-year-old young man who developed recurrent and serious VTE in cerebral veins, visceral veins, and deep veins of the lower extremity. Laboratory tests and direct sequencing of PROC and SERPINC1 were conducted for the patient and his family members. Coagulation tests revealed that the patient presented type I antithrombin deficiency combined with decreased protein C activity resulting from a small insertion mutation c.848_849insGATGT in SERPINC1 and a short deletion variant c.572_574delAGA in PROC. This combination of the two mutations was absent in 400 healthy subjects each from southern and northern China. Then, we summarized all the mutations of the SERPINC1 and PROC gene reported in the Chinese Han population. This study demonstrates that the combination of antithrombin deficiency and decreased protein C activity can result in severe VTE and that the coexistence of different genetic factors may increase the risk of VTE.
Antithrombin III
;
genetics
;
Antithrombin III Deficiency
;
etiology
;
genetics
;
China
;
Female
;
Humans
;
Male
;
Middle Aged
;
Mutation
;
Pedigree
;
Protein C
;
genetics
;
metabolism
;
Venous Thromboembolism
;
complications
;
genetics
;
Young Adult
8.Effects of Glucocorticoid-Induced Transcript 1 Gene Deficiency on Glucocorticoid Activation in Asthmatic Mice.
Cheng-Ping HU ; Qiu-Fen XUN ; Xiao-Zhao LI ; Xin-Yue HU ; Ling QIN ; Ruo-Xi HE ; Jun-Tao FENG
Chinese Medical Journal 2018;131(23):2817-2826
Background:
Glucocorticoid (GC) is the first-line therapy for asthma, but some asthmatics are insensitive to it. Glucocorticoid-induced transcript 1 gene (GLCCI1) is reported to be associated with GCs efficiency in asthmatics, while its exact mechanism remains unknown.
Methods:
A total of 30 asthmatic patients received fluticasone propionate for 12 weeks. Forced expiratory volume in 1 s (FEV) and GLCCI1 expression were detected. Asthma model was constructed in wild-type and GLCCI1 knockout (GLCCI1) mice. Glucocorticoid receptor (GR) and mitogen-activated protein kinase phosphatase 1 (MKP-1) expression were detected by polymerase chain reaction and Western blotting (WB). The phosphorylation of p38 mitogen-activated protein kinase (MAPK) was also detected by WB.
Results:
In asthmatic patients, the change of FEV was well positively correlated with change of GLCCI1 expression (r = 0.430, P = 0.022). In animal experiment, GR and MKP-1 mRNA levels were significantly decreased in asthmatic mice than in control mice (wild-type: GR: 0.769 vs. 1.000, P = 0.022; MKP-1: 0.493 vs. 1.000, P < 0.001. GLCCI1: GR: 0.629 vs. 1.645, P < 0.001; MKP-1: 0.377 vs. 2.146, P < 0.001). Hydroprednisone treatment significantly increased GR and MKP-1 mRNA expression levels than in asthmatic groups; however, GLCCI1 asthmatic mice had less improvement (wild-type: GR: 1.517 vs. 0.769, P = 0.023; MKP-1: 1.036 vs. 0.493, P = 0.003. GLCCI1: GR: 0.846 vs. 0.629, P = 0.116; MKP-1: 0.475 vs. 0.377, P = 0.388). GLCCI1 asthmatic mice had more obvious phosphorylation of p38 MAPK than wild-type asthmatic mice (9.060 vs. 3.484, P < 0.001). It was still higher even though after hydroprednisone treatment (6.440 vs. 2.630, P < 0.001).
Conclusions:
GLCCI1 deficiency in asthmatic mice inhibits the activation of GR and MKP-1 and leads to more obvious phosphorylation of p38 MAPK, leading to a decremental sensitivity to GCs.
Trial Registration
ChiCTR.org.cn, ChiCTR-RCC-13003634; http://www.chictr.org.cn/showproj.aspx?proj=5926.
Animals
;
Asthma
;
drug therapy
;
metabolism
;
Dual Specificity Phosphatase 1
;
genetics
;
metabolism
;
Forced Expiratory Volume
;
genetics
;
physiology
;
Glucocorticoids
;
therapeutic use
;
Mice
;
Mice, Knockout
;
Phosphorylation
;
genetics
;
physiology
;
Receptors, Glucocorticoid
;
deficiency
;
genetics
;
metabolism
;
p38 Mitogen-Activated Protein Kinases
;
genetics
;
metabolism
10.Identification of natural compounds targeting Annexin A2 with an anti-cancer effect.
Yu-Shi WANG ; He LI ; Yang LI ; Hongyan ZHU ; Ying-Hua JIN
Protein & Cell 2018;9(6):568-579
Annexin A2, a multifunctional tumor associated protein, promotes nuclear factor-kappa B (NF-κB) activation by interacting with NF-κB p50 subunit and facilitating its nuclear translocation. Here we demonstrated that two ginsenosides Rg5 (G-Rg5) and Rk1 (G-Rk1), with similar structure, directly bound to Annexin A2 by molecular docking and cellular thermal shift assay. Both Rg5 and Rk1 inhibited the interaction between Annexin A2 and NF-κB p50 subunit, their translocation to nuclear and NF-κB activation. Inhibition of NF-κB by these two ginsenosides decreased the expression of inhibitor of apoptosis proteins (IAPs), leading to caspase activation and apoptosis. Over expression of K302A Annexin A2, a mutant version of Annexin A2, which fails to interact with G-Rg5 and G-Rk1, effectively reduced the NF-κB inhibitory effect and apoptosis induced by G-Rg5 and G-Rk1. In addition, the knockdown of Annexin A2 largely enhanced NF-κB activation and apoptosis induced by the two molecules, indicating that the effects of G-Rg5 and G-Rk1 on NF-κB were mainly mediated by Annexin A2. Taken together, this study for the first time demonstrated that G-Rg5 and G-Rk1 inhibit tumor cell growth by targeting Annexin A2 and NF-κB pathway, and G-Rg5 and G-Rk1 might be promising natural compounds for targeted cancer therapy.
Active Transport, Cell Nucleus
;
drug effects
;
Annexin A2
;
chemistry
;
deficiency
;
genetics
;
metabolism
;
Antineoplastic Agents
;
chemistry
;
metabolism
;
pharmacology
;
Apoptosis
;
drug effects
;
Biological Products
;
chemistry
;
metabolism
;
pharmacology
;
Cell Nucleus
;
drug effects
;
metabolism
;
Down-Regulation
;
drug effects
;
Drug Discovery
;
Gene Knockdown Techniques
;
Ginsenosides
;
chemistry
;
Hep G2 Cells
;
Humans
;
Molecular Docking Simulation
;
Molecular Targeted Therapy
;
NF-kappa B p50 Subunit
;
metabolism
;
Protein Conformation

Result Analysis
Print
Save
E-mail