1.Pharmacology of mangostins and their derivatives: A comprehensive review.
Ming-Hui WANG ; Kuo-Jun ZHANG ; Qin-Lan GU ; Xiao-Ling BI ; Jin-Xin WANG
Chinese Journal of Natural Medicines (English Ed.) 2017;15(2):81-93
Mangosteen (Garcinia mangostana Linn.) is a well-known tropical tree indigenous to Southeast Asia. Its fruit's pericarp abounds with a class of isoprenylated xanthones which are referred as mangostins. Numerous in vitro and in vivo studies have shown that mangostins and their derivatives possess diverse pharmacological activities, such as antibacterial, antifungal, antimalarial, anticarcinogenic, antiatherogenic activities as well as neuroprotective properties in Alzheimer's disease (AD). This review article provides a comprehensive review of the pharmacological activities of mangostins and their derivatives to reveal their promising utilities in the treatment of certain important diseases, mainly focusing on the discussions of the underlying molecular targets/pathways, modes of action, and relevant structure-activity relationships (SARs). Meanwhile, the pharmacokinetics (PK) profile and recent toxicological studies of mangostins are also described for further druggability exploration in the future.
Animals
;
Anti-Infective Agents
;
pharmacology
;
Anticarcinogenic Agents
;
pharmacology
;
Antineoplastic Agents, Phytogenic
;
pharmacology
;
Antioxidants
;
pharmacology
;
Cardiovascular Agents
;
pharmacology
;
Fruit
;
chemistry
;
Garcinia mangostana
;
chemistry
;
Humans
;
Neuroprotective Agents
;
pharmacology
;
Phytotherapy
;
Plant Extracts
;
pharmacology
;
Protective Agents
;
pharmacology
;
Xanthones
;
pharmacology
2.Research progress of irradiation injuries anti-agents.
Ya Nan DU ; Xue Ying YANG ; Qiang ZENG
Chinese Journal of Industrial Hygiene and Occupational Diseases 2023;41(3):237-240
Irradiation injuries anti-agents refer to drugs that can inhibit the initial stage of radiation injuries, or reduce the development of radiation injuries and promote the recovery of injuries when used early after irradiation exposure. According to the mechanism of action and the time of intervention, the irradiation injuries anti-agents are divided into four categories: radioprotectors, radiomitigators, radiation therapeutics for external radiation exposure, and anti-agents for internalized radionuclides. In this paper, the research progress of irradiation injuries anti-agents in recent years is reviewed.
Humans
;
Radiation-Protective Agents/therapeutic use*
;
Radiation Injuries/prevention & control*
3.The toxicological mechanisms and detoxification of depleted uranium exposure.
Yong-Chao YUE ; Ming-Hua LI ; Hai-Bo WANG ; Bang-Le ZHANG ; Wei HE
Environmental Health and Preventive Medicine 2018;23(1):18-18
Depleted uranium (DU) has been widely applied in industrial and military activities, and is often obtained from producing fuel for nuclear reactors. DU may be released into the environment, polluting air, soil, and water, and is considered to exert both radiological and chemical toxicity. In humans and animals, DU can induce multiple health effects, such as renal tubular necrosis and bone malignancies. This review summarizes the known information on DU's routes of entry, mechanisms of toxicity, and health effects. In addition, we survey the chelating agents used in ameliorating DU toxicity.
Animals
;
Chelating Agents
;
pharmacology
;
Humans
;
Inactivation, Metabolic
;
Radiation-Protective Agents
;
pharmacology
;
Uranium
;
metabolism
;
toxicity
4.Hepatoprotective effects of Protecliv in the experiments
Journal of Practical Medicine 2005;10():17-20
Protecliv is one of products of the National Project-2003 were tested before approval. This product was manufactored by The Central Pharmaceutical Company No1. The role of the Protecliv were investigated in protection against INH and RIF-induced hepatotoxicity in young rats. All drugs were administered orally in suspension form over one week. These results suggested that , INH-RIF-induced hepatotoxicity can be prevented by Protecliv at the two levels of the dose. The significant hepatoprotective dose of this compound was 250 and 500mg/kg wb/day (p<0.01) according the level of the used dose.
Protective Agents
;
Liver
;
Animal Experimentation
5.Plant-based Rasayana drugs from Ayurveda.
Subramani Paranthaman BALASUBRAMANI ; Padma VENKATASUBRAMANIAN ; Subrahmanya Kumar KUKKUPUNI ; Bhushan PATWARDHAN
Chinese journal of integrative medicine 2011;17(2):88-94
Rasayana tantra is one of the eight specialties of Ayurveda. It is a specialized practice in the form of rejuvenative recipes, dietary regimen, special health promoting behaviour and drugs. Properly administered Rasayana can bestow the human being with several benefits like longevity, memory, intelligence, freedom from diseases, youthful age, excellence of luster, complexion and voice, optimum strength of physique and sense organs, respectability and brilliance. Various types of plant based Rasayana recipes are mentioned in Ayurveda. Review of the current literature available on Rasayanas indicates that anti-oxidant and immunomodulation are the most studied activities of the Rasayana drugs. Querying in Pubmed database on Rasayanas reveals that single plants as well as poly herbal formulations have been researched on. This article reviews the basics of Rasayana therapy and the published research on different Rasayana drugs for specific health conditions. It also provides the possible directions for future research.
Animals
;
Anti-Ulcer Agents
;
pharmacology
;
therapeutic use
;
Antineoplastic Agents, Phytogenic
;
pharmacology
;
therapeutic use
;
Antiparasitic Agents
;
pharmacology
;
therapeutic use
;
Aphrodisiacs
;
pharmacology
;
therapeutic use
;
Free Radical Scavengers
;
pharmacology
;
therapeutic use
;
Giardiasis
;
drug therapy
;
Herbal Medicine
;
classification
;
methods
;
trends
;
Humans
;
Immunologic Factors
;
pharmacology
;
therapeutic use
;
Medicine, Ayurvedic
;
Models, Biological
;
Neuroprotective Agents
;
pharmacology
;
therapeutic use
;
Plant Preparations
;
classification
;
therapeutic use
;
Radiation-Protective Agents
;
pharmacology
;
therapeutic use
6.Expression, purification of recombinant human cryptochrome I and its application in preparation of protective agent for radiotherapy.
Chen YAO ; Chunjie SHENG ; Dong LIU ; Shijuan GAO ; Wei JIANG ; Hongyan YU ; Jiandong LI ; Huiming CHEN ; Jiaoxiang WU ; Changchuan PAN ; Shuai CHEN ; Wenlin HUANG
Chinese Journal of Biotechnology 2015;31(1):135-146
Radiotherapy is a treatment for cancer with undesired by-effects. In order to develop a new radiation protective agent that could reduce the by-effects, we tried to express and purify human cryptochrome 1 (hCRY1). The coding sequence of hCRY1 was inserted into prokaryotic expression plasmid pET28a(+), and this protein was purified from Escherichia coli BL21(DE3) after IPTG induction, ultrasonication, inclusion body dissolution, gradient dialysis, nickel column purification and ultrafiltration. The yield of hCRY1 in 1 L E. coli culture (LB medium) was about 10-15 mg. The radiation protective efficiency of hCRY1 was monitored by detecting X-ray-induced H2A.X foci in HaCaT cells. The results of immunofluorescence show that hCRY1 significantly reduces X-ray stimulated DNA damage response. The apoptosis of HaCaT cell was also detected, and the repression of H2A.X foci formation was not due to hCRY1's cytotoxity. All these data suggest a potential application of recombinant hCRY1 as a protective agent for radiotherapy.
Cryptochromes
;
biosynthesis
;
Escherichia coli
;
Humans
;
Plasmids
;
Radiation-Protective Agents
;
Recombinant Proteins
;
biosynthesis
7.Mechanism and problem of amifostine in treating myelodysplastic syndromes.
Yan-Hui DANG ; Wei LI ; Bo YANG ; Hong-Li ZHU ; Yu HUANG
Journal of Experimental Hematology 2009;17(6):1597-1601
Myelodysplastic syndrome (MDS) is one of the most prevalent haematological malignancies originating from haemopoietic stem/progenitor cells. MDS characterized by morbid haematopoiesis of bone marrow and peripheral blood cell reduction and mainly occurs in the elders. The dangerous factors of MDS include chemotherapy, radiotherapy, benzene, other organic solvent, immune depressants and so on. Following the recent progress of medical sciences, a large number of new regimens of chemotherapy, radiotherapy and immune therapy against carcinomas generate and lead the development of therapeutics for malignancies. It is worried that the incidence of MDS still increases year by year and the patient age becomes younger. Although many agents are used to MDS, curative effect is not as good as expect. Amifostine, a kind of pancytoprotector also used in treatment of MDS. This review summarizes the mechanism of amifostine in MDS therapy which possesses a challenge binding with the current related investigations.
Amifostine
;
therapeutic use
;
Humans
;
Myelodysplastic Syndromes
;
drug therapy
;
Radiation-Protective Agents
;
therapeutic use
8.Protective effect of astaxanthin against epididymal oxidative damagein rats with ornidazole-induced oligoasthenozoospermia.
Wei LIU ; Xiao-Fang KANG ; Guo-Wei ZHANG ; Hong-Cai CAI ; Kai-Qiang LI ; Ling-Ling WANG ; Xue-Jun SHANG
National Journal of Andrology 2017;23(3):206-211
Objective:
To investigate the improving effect of astaxanthin (AST) on the sperm quality of rats with ornidazole (ORN)-induced oligoasthenozoospermiaand its action mechanism.
METHODS:
Forty adult male SD rats were equally randomized into groups A (solvent control), B (low-dose ORN [400 mg/(kg·d)]), C (high-dose ORN [800 mg/(kg·d)]), D (low-dose ORN [400 mg/(kg·d)] + AST [20 mg/(kg·d)]), and E (high-dose ORN [800 mg/(kg·d)] + AST [20 mg/(kg·d)]), all treated intragastrically for3 weeks.After treatment, the epididymal tails ononeside was taken for determination of sperm concentration and activity, and the epididymideson the other side harvested for measurement of the activities of GSH-Px, GR, CAT and SOD and the MDA contentin the homogenate.
RESULTS:
Compared with group A, sperm motilityin the epididymal tail andGSH-Px and SOD activities in theepididymiswere markedly decreased while the MDAcontent significantlyincreased in group B (P<0.05), spermmotility and concentrationin the epididymal tail, testisindex, and the activities of GSH-Px, GR, CAT and SOD in the epididymis were remarkably reduced while theMDA contentsignificantly increased in group C(P<0.05). In comparison with group B, group D showed markedly increased sperm motility ([45.3±8.7]% vs [66.3±8.9]%, P<0.05) in the epididymal tail and SOD activity in the epididymis ([116.7±25.3] U/mg prot vs [146.1±23.8] U/mg prot, P<0.05), decreased MDA content([1.68±0.45] nmol/mg prot vs [1.19±0.42] nmol/mg prot, P<0.05).Compared with group C, group Eexhibited significant increases in the weight gained ([89.0±9.5] vs [99.9±4.1] %, P<0.05) and sperm motility ([17.9±3.5]% vs [27.3±5.3] %, P<0.05) but a decrease in the content of MDA ([2.03±0.30] nmol/mg prot vs [1.52±0.41] nmol/mg prot, P<0.05).
CONCLUSIONS
AST can improve spermquality in rats with ORN-inducedoligoasthenozoospermia, which may be associated with its enhancing effect on the antioxidant capacity of the epididymis.
Animals
;
Antioxidants
;
pharmacology
;
Asthenozoospermia
;
prevention & control
;
Epididymis
;
drug effects
;
metabolism
;
Male
;
Oligospermia
;
prevention & control
;
Ornidazole
;
Oxidative Stress
;
Protective Agents
;
pharmacology
;
Radiation-Sensitizing Agents
;
Random Allocation
;
Rats
;
Rats, Sprague-Dawley
;
Sperm Count
;
Sperm Motility
;
Spermatozoa
;
drug effects
;
metabolism
;
Xanthophylls
;
pharmacology
9.Protective Effects of Epigallocatechin Gallate after UV Irradiation in Cultured Human Retinal Pigment Epithelial Cells.
Seong Won YANG ; Byung Rae LEE ; Jae Woong KOH
Korean Journal of Ophthalmology 2007;21(4):232-237
PURPOSE: To evaluate the protective effects of Epigallocatechin gallate (EGCG) against UV irradiation in cultured human retinal pigment epithelial (RPE) cells. METHODS: UV irradiation was produced by a UV lamp for 30 seconds with an irradiance of 3.3 mW/cm2. After 5 minutes and 1 hour, we administered different concentrations of EGCG (0, 5, 10, 15, 25, 50, 100 uM). The cell count was determined under a microscope using a counting chamber and the cell activity was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. RESULTS: The cell count of cultured human RPE cells after UV irradiation was markedly increased in the EGCG administration group, compared with the non-administrated group. The cell activity of the cultured human RPE cells after UV irradiation was markedly increased in the EGCG administration group and was increased in a dose-dependent way as determined by the MTT assay. CONCLUSIONS: The administration of EGCG increased the cell count and the cell activity after UV irradiation in cultured human retinal pigment epithelial cells; this suggests that EGCG provided protection against UV damage in cultured human retinal pigmented epithelial cells.
Antioxidants/*pharmacology
;
Catechin/*analogs & derivatives/pharmacology
;
Cell Count
;
Cells, Cultured
;
Dose-Response Relationship, Radiation
;
Humans
;
Pigment Epithelium of Eye/cytology/*drug effects/radiation effects
;
Radiation Injuries/pathology/*prevention & control
;
Radiation-Protective Agents
;
Spectrophotometry
;
*Ultraviolet Rays
10.Current situation and prospect of treatment for radiation-induced lung injury.
Xin LI ; Jianxin XUE ; You LU
Journal of Biomedical Engineering 2010;27(4):937-940
Radiation-induced lung injury (RILI) is the most common complication of the radiotherapy for thoracic tumor. It can lower the ratio of local control and seriously affect the patients' quality of life. At present, the clinical management of RILI is not more than the use of glucocorticoid and anti-inflammatory agent for symptomatic treatments. These treatments do not have any preventive effect but cause much side reactions. In this paper, we review the data from the contigency researches on the mechanism of RILI, from the researches on gene therapy and stem cell-therapy, and we dicuss the more safe, more stable and more efficacious treatment of RILI.
Antioxidants
;
therapeutic use
;
Genetic Therapy
;
methods
;
Humans
;
Lung
;
pathology
;
radiation effects
;
Lung Neoplasms
;
radiotherapy
;
Mesenchymal Stem Cell Transplantation
;
methods
;
Radiation Injuries
;
etiology
;
therapy
;
Radiation Pneumonitis
;
etiology
;
therapy
;
Radiation-Protective Agents
;
therapeutic use
;
Radiotherapy, Conformal
;
adverse effects