1.Effect of Bushen Huoxue Granule on Clearance of Pathological α-Synuclein in MPP+-Induced PC12 Cells.
Zhen-Xian LUAN ; Xiang-Lin TANG ; Fei-Ran HAO ; Min LI ; Shao-Dan LI ; Ming-Hui YANG
Chinese journal of integrative medicine 2025;31(9):830-836
OBJECTIVE:
To investigate the effects of Bushen Huoxue Granule on the ubiquitin-proteasome system (UPS) in an in vitro model of Parkinson's disease.
METHODS:
After treated with 1-methyl-4-phenylpyridinium (MPP+, 1 mmol/L) for 24 h, the cells were incubated with drug-free serum, Madopar-containing serum or Bushen Huoxue Granule-containing serum (BCS, 5%, 10%, and 20%) for another 24 h. The levels of α-synuclein (α-syn), tyrosine hydroxylase (TH) and UPS-related proteins were detected by Western blot. The expression levels of α-syn in PC12 cells were also analyzed by Western blot after treated with proteasome inhibitor MG132 and WT-α-syn plasmid transfection, respectively, as well as the alterations induced by subsequent BCS intervention. Immunocytochemistry was performed to determine the changes in α-syn phosphorylation at serine 129 (pSer129-α-syn) expression. The 20S proteasome levels were measured by enzyme-linked immunosorbnent assay.
RESULTS:
BCS (volume fraction ⩽20%) intervention could alleviate the MMP+-induced cell viability decrease (P<0.05). In the MPP+ treated cells, α-syn was up-regulated, while TH and proteins of UPS such as ubiquitin (Ub), Ub binding with Ub-activating enzyme (UBE1), Parkin and Ub C-terminal hydrolase-1 (UCHL-1) were down-regulated (P<0.05). BCS intervention could attenuate the above changes (P<0.05). The activity of BCS on blocking α-syn accumulation was weakened by MG132 (P<0.05). While α-syn level was significantly increased in cells transfected with plasmid, and reduced by BCS intervention (P<0.05). pSer129-α-syn was increased in MPP+-induced PC12 cells, whereas decreased by later BCS intervention (P<0.05). The 20S proteasome activity of MPP+-induced PC12 cells was decreased, but increased after BCS intervention (P<0.05).
CONCLUSION
BCS intervention protected UPS function, increased 20S proteasome activity, promoted pathological α-syn clearance, restored cell viability, and reversed the damage caused by MPP+ in the in vitro model of Parkinson's disease.
PC12 Cells
;
alpha-Synuclein/metabolism*
;
Rats
;
Animals
;
1-Methyl-4-phenylpyridinium/toxicity*
;
Proteasome Endopeptidase Complex/metabolism*
;
Drugs, Chinese Herbal/pharmacology*
;
Ubiquitin/metabolism*
;
Cell Survival/drug effects*
;
Phosphorylation/drug effects*
;
Tyrosine 3-Monooxygenase/metabolism*
2.Exploiting targeted degradation of cyclins and cyclin-dependent kinases for cancer therapeutics: a review.
Suya ZHENG ; Ye CHEN ; Zhipeng ZHU ; Nan LI ; Chunyu HE ; H Phillip KOEFFLER ; Xin HAN ; Qichun WEI ; Liang XU
Journal of Zhejiang University. Science. B 2025;26(8):713-739
Cancer is characterized by abnormal cell proliferation. Cyclins and cyclin-dependent kinases (CDKs) have been recognized as essential regulators of the intricate cell cycle, orchestrating DNA replication and transcription, RNA splicing, and protein synthesis. Dysregulation of the CDK pathway is prevalent in the development and progression of human cancers, rendering cyclins and CDKs attractive therapeutic targets. Several CDK4/6 inhibitors have demonstrated promising anti-cancer efficacy and have been successfully translated into clinical use, fueling the development of CDK-targeted therapies. With this enthusiasm for finding novel CDK-targeting anti-cancer agents, there have also been exciting advances in the field of targeted protein degradation through innovative strategies, such as using proteolysis-targeting chimera, heat shock protein 90 (HSP90)-mediated targeting chimera, hydrophobic tag-based protein degradation, and molecular glue. With a focus on the translational potential of cyclin- and CDK-targeting strategies in cancer, this review presents the fundamental roles of cyclins and CDKs in cancer. Furthermore, it summarizes current strategies for the proteasome-dependent targeted degradation of cyclins and CDKs, detailing the underlying mechanisms of action for each approach. A comprehensive overview of the structure and activity of existing CDK degraders is also provided. By examining the structure‒activity relationships, target profiles, and biological effects of reported cyclin/CDK degraders, this review provides a valuable reference for both CDK pathway-targeted biomedical research and cancer therapeutics.
Humans
;
Neoplasms/metabolism*
;
Cyclin-Dependent Kinases/antagonists & inhibitors*
;
Cyclins/metabolism*
;
Proteolysis
;
Antineoplastic Agents/pharmacology*
;
Molecular Targeted Therapy
;
Proteasome Endopeptidase Complex/metabolism*
;
Animals
3.The Role and Mechanisms of Ubiquitin-Proteasome System-Mediated Ferroptosis in Neurological Disorders.
Xin LIU ; Wei WANG ; Qiucheng NIE ; Xinjing LIU ; Lili SUN ; Qiang MA ; Jie ZHANG ; Yiju WEI
Neuroscience Bulletin 2025;41(4):691-706
Ferroptosis is a form of cell death elicited by an imbalance in intracellular iron concentrations, leading to enhanced lipid peroxidation. In neurological disorders, both oxidative stress and mitochondrial damage can contribute to ferroptosis, resulting in nerve cell dysfunction and death. The ubiquitin-proteasome system (UPS) refers to a cellular pathway in which specific proteins are tagged with ubiquitin for recognition and degradation by the proteasome. In neurological conditions, the UPS plays a significant role in regulating ferroptosis. In this review, we outline how the UPS regulates iron metabolism, ferroptosis, and their interplay in neurological diseases. In addition, we discuss the future application of small-molecule inhibitors and identify potential drug targets. Further investigation into the mechanisms of UPS-mediated ferroptosis will provide novel insights and strategies for therapeutic interventions and clinical applications in neurological diseases.
Ferroptosis/physiology*
;
Humans
;
Proteasome Endopeptidase Complex/metabolism*
;
Nervous System Diseases/metabolism*
;
Animals
;
Ubiquitin/metabolism*
;
Iron/metabolism*
4.Progress on the role of N-end rule pathways in protein degradation.
Na-Xin XU ; Yong LIU ; Yi WANG ; Shu-Kuan LING
Acta Physiologica Sinica 2024;76(6):987-1000
The N-end rule pathway is a protein degradation pathway mediated by the ubiquitin-proteasome system, which specifically targets and degrades target proteins by recognizing specific residues at the N-terminus of the proteins. The residues which play a crucial role in the N-end rule pathway are called degrons, also known as N-degrons, as they are usually unstable at the N-terminal end of the protein. Currently, several N-end rule pathways have been identified in the eukaryotes, including the Arg/N-end rule, Ac/N-end rule, and Pro/N-end rule pathways, as well as the recently discovered Gly/N-end rule pathway. The Ac/N-end rule pathway targets proteins containing N-terminal acetylation (Nt-acetylation) residues. The Arg/N-end rule pathway, on the other hand, targets certain unacetylated residues and involves N-terminal arginylation. For proteins with N-terminal proline (Pro) and glycine (Gly) residues, they are neither modified by acetylation nor recognized through the Arg/N-end rule pathway. Therefore, these proteins are primarily recognized and degraded through the Pro/N-end rule pathway and the Gly/N-end rule pathway. The regulation of specific proteins through N-end rule pathway-mediated degradation plays an important role in numerous physiological and pathological processes, such as cardiovascular development, neurogenesis, meiosis, spermatogenesis, HPV infection, and cell apoptosis. In this review, we summarize the role and mechanisms of several known N-end rule pathways and discuss their relationship with certain diseases. As an independent protein degradation system, the N-end rule pathways still hold countless biological secrets waiting for exploring. The comprehensive understanding of these pathways could potentially uncover novel therapeutic targets for various diseases.
Humans
;
Proteolysis
;
Animals
;
Proteasome Endopeptidase Complex/physiology*
;
Acetylation
;
Proteins/metabolism*
;
Protein Processing, Post-Translational
;
Ubiquitin/metabolism*
5.Research progress on molecular mechanism related to skeletal muscle atrophy.
Yi-Bing KE ; Dawuti ABUDOUKEREMU ; Hao-Ran GUO ; Yong-Ping WANG
Acta Physiologica Sinica 2024;76(6):1056-1068
The maintenance of skeletal muscle quality involves various signal pathways that interact with each other. Under normal physiological conditions, these intersecting signal pathways regulate and coordinate the hypertrophy and atrophy of skeletal muscles, balancing the protein synthesis and degradation of muscle. When the total rate of protein synthesis exceeds that of protein degradation, the muscle gradually becomes enlarged, while when the total rate of protein synthesis is lower than that of protein degradation, the muscle shrinks. Myocyte atrophy mainly involves two protein degradation pathways, namely ubiquitin-proteasome and autophagy-lysosome. Protein degradation pathway is activated during muscle atrophy, resulting in the loss of muscle mass. Muscle atrophy can occur under various conditions such as malnutrition, aging and cachexia. Skeletal muscle atrophy caused by orthopedic diseases mainly includes disuse muscular atrophy caused by fracture and denervation muscular atrophy. The signal pathways that control and coordinate protein synthesis and degradation in skeletal muscle include insulin-like growth factor 1 (IGF1)-Akt-mammalian target of rapamycin (mTOR), myostatin-activin A-Smad, G protein α inhibitory peptide 2 (Gαi2)-PKC, nuclear factor κB (NF-κB), ectodysplasin A2 receptor (EDA2R)-NF-κB inducing kinase (NIK) and mitogen-activated protein kinase (MAPK) pathways. This paper provides a comprehensive review of the protein degradation pathways in skeletal muscle atrophy and the associated signal pathways regulating protein degradation in muscular atrophy.
Humans
;
Muscular Atrophy/etiology*
;
Muscle, Skeletal/pathology*
;
Signal Transduction
;
Animals
;
Insulin-Like Growth Factor I/metabolism*
;
Myostatin/physiology*
;
TOR Serine-Threonine Kinases/metabolism*
;
Autophagy/physiology*
;
NF-kappa B/metabolism*
;
Proteolysis
;
Proteasome Endopeptidase Complex/physiology*
6.Design and functional validation of a chimeric E3 ubiquitin ligase targeting the spike protein S1 subunit of SARS-CoV-2.
Yan DAI ; Jiayu LIN ; Xiaoya ZHANG ; Haorui LU ; Lang RAO
Chinese Journal of Biotechnology 2024;40(11):4071-4083
The spike (S) protein plays a crucial role in the entry of SARS-CoV-2 into host cells. The S protein contains two subunits, S1 and S2. The receptor-binding domain (RBD) of the S1 subunit binds to the receptor angiotensin-converting enzyme 2 (ACE2) to enter the host cells. Therefore, degrading S1 is one of the feasible strategies to inhibit SARS-CoV-2 infection. The purpose of this study is to develop a degradation tool targeting S1. First, we constructed a HEK 293 cell line stably expressing S1 by using a three-plasmid lentivirus system. The overexpression of the mitochondrial E3 ubiquitin protein ligase 1 (MUL1) in this cell line promoted the ubiquitination of S1 and accelerated its proteasomal degradation. Further research showed the polyubiquitination of S1 catalyzed by MUL1 mainly occurred via the addition of K48-linked chains. Moreover, the specific peptide LCB1, which targets and recognizes S1, was combined with MUL1 to create the chimeric E3 ubiquitin ligase LCB1-MUL1. In comparison to MUL1, this chimeric enzyme demonstrated improved catalytic efficiency, resulting in a reduction of S1's half-life from 12 h to 9 h. In summary, this study elucidated the mechanism by which MUL1 promotes the ubiquitination modification of S1 and facilitates its degradation through the proteasome, and preliminarily validated the effectiveness of targeted degradation of S1 by chimeric enzyme LCB1-MUL1.
Ubiquitin-Protein Ligases/genetics*
;
Humans
;
HEK293 Cells
;
Ubiquitination
;
Spike Glycoprotein, Coronavirus/genetics*
;
SARS-CoV-2/metabolism*
;
Recombinant Fusion Proteins/metabolism*
;
Proteasome Endopeptidase Complex/genetics*
;
COVID-19/metabolism*
;
Angiotensin-Converting Enzyme 2/genetics*
7.Advances in the preclinical and clinical research of proteolysis targeting chimera.
Chinese Journal of Biotechnology 2023;39(9):3615-3627
Proteolysis targeting chimera (PROTAC) refers to heterobifunctional small molecules that can simultaneously bind an E3 ubiquitin ligase and a target protein, enabling specific degradation of the target protein with the aid of the ubiquitin proteasome system. At present, most PROTAC drugs are in the clinical trial stage, and the ligands are mainly non-covalent compounds. PROTAC drugs have the advantage of overcoming drug resistance and degrading "undruggable" target proteins, but non-covalent ligands could lead to the hook effect that undermines drug efficacy. With its own advantages, covalent ligands can avoid the occurrence of this phenomenon, which is of great help to the development of PROTAC. This review summarizes the progress in preclinical and clinical research and application of PROTAC molecules targeting three different classes of protein targets, including intranuclear, transmembrane, and cytosolic proteins. We also offer perspective discussions to provide research ideas and references for the future development of PROTAC.
Proteolysis
;
Proteolysis Targeting Chimera
;
Proteasome Endopeptidase Complex/metabolism*
;
Ubiquitin-Protein Ligases/metabolism*
;
Proteins/metabolism*
;
Ligands
8.Identification and validation of novel biomarkers for cold-dampness syndrome of rheumatoid arthritis based on integration of multiple bioinformatics methods.
Tao LI ; Wen-Jia CHEN ; Yan-Qiong ZHANG ; Wei LIU ; Na LIN ; Xue-Ting LIU
China Journal of Chinese Materia Medica 2023;48(24):6721-6729
This study aims to identify the novel biomarkers of cold-dampness syndrome(RA-Cold) of rheumatoid arthritis(RA) by gene set enrichment analysis(GSEA), weighted gene correlation network analysis(WGCNA), and clinical validation. Firstly, transcriptome sequencing was carried out for the whole blood samples from RA-Cold patients, RA patients with other traditional Chinese medicine(TCM) syndromes, and healthy volunteers. The differentially expressed gene(DEG) sets of RA-Cold were screened by comparison with the RA patients with other TCM syndromes and healthy volunteers. Then, GSEA and WGCNA were carried out to screen the key DEGs as candidate biomarkers for RA-Cold. Experimentally, the expression levels of the candidate biomarkers were determined by RT-qPCR for an independent clinical cohort(not less than 10 cases/group), and the clinical efficacy of the candidates was assessed using the receiver operating characteristic(ROC) curve. The results showed that 3 601 DEGs associated with RA-Cold were obtained, including 106 up-regulated genes and 3 495 down-regulated genes. The DEGs of RA-Cold were mainly enriched in the pathways associated with inflammation-immunity regulation, hormone regulation, substance and energy metabolism, cell function regulation, and synovial pannus formation. GSEA and WGCNA showed that recombinant proteasome 26S subunit, ATPase 2(PSMC2), which ranked in the top 50% in terms of coefficient of variation, representativeness of pathway, and biological modules, was a candidate biomarker of RA-Cold. Furthermore, the validation results based on the clinical independent sample set showed that the F1 value, specificity, accuracy, and precision of PSMC2 for RA-Cold were 70.3%, 61.9%, 64.5%, and 81.3%, respectively, and the area under the curve(AUC) value was 0.96. In summary, this study employed the "GSEA-WGCNA-validation" integrated strategy to identify novel biomarkers of RA-Cold, which helped to improve the TCM clinical diagnosis and treatment of core syndromes in RA and provided an experimental basis for TCM syndrome differentiation.
Humans
;
Arthritis, Rheumatoid/drug therapy*
;
Biomarkers/metabolism*
;
Medicine, Chinese Traditional
;
Gene Expression Profiling/methods*
;
Computational Biology
;
Gene Regulatory Networks
;
ATPases Associated with Diverse Cellular Activities/therapeutic use*
;
Proteasome Endopeptidase Complex/therapeutic use*
9.Application of PROTACs in Hematological Malignancies--Review.
Journal of Experimental Hematology 2023;31(6):1921-1924
Proteolysis-targeting chimeras (PROTACs) are heterobifunctional small molecules by utilizing the ubiquitin proteasome system (UPS) to degrade proteins of interest. PROTACs have exhibited unprecedented efficacy and specificity in degrading various oncogenic proteins because of their unique mechanism of action, ability to target "undruggable" and mutant proteins. A series of PROTACs have been developed to degrade multiple key protein targets for the treatment of hematologic malignancy. Notably, PROTACs that target BCL-XL, IRAK4, STAT3 and BTK have entered clinical trials. The known PROTACs that have the potential to be used to treat various hematological malignancies are systematically summarized in this review.
Humans
;
Hematologic Neoplasms/drug therapy*
;
Proteasome Endopeptidase Complex/metabolism*
;
Ubiquitin-Protein Ligases/metabolism*
;
Proteolysis Targeting Chimera
10.Research Progress of Ubiquitin Proteasome Inhibitors in Acute Myeloid Leukemia.
Fang-Nan XIAO ; Ming-Ying ZHANG ; Yuan ZHOU
Acta Academiae Medicinae Sinicae 2022;44(5):868-875
Ubiquitin-proteasome system (UPS) plays an essential role in eukaryotic protein cycle,the dysregulation of which can lead to tumorigenesis.Increased activities of UPS have been observed in the patients with cancers including leukemia.UPS inhibitors can kill cancer cells by affecting ubiquitin-ligating enzyme E3,deubiquitinase,and protein degradation active sites of UPS.Therefore,UPS inhibitors have emerged as an important therapy for treating hematological malignancies,while they are rarely applied in the treatment of acute myeloid leukemia.This paper summarizes the research progress in the inhibitors affecting the protein ubiquitination at different stages of acute myeloid leukemia,aiming to provide new clues for the clinical treatment of acute myeloid leukemia.
Humans
;
Proteasome Inhibitors/therapeutic use*
;
Ubiquitin/metabolism*
;
Proteasome Endopeptidase Complex/metabolism*
;
Ubiquitination
;
Leukemia, Myeloid, Acute/drug therapy*

Result Analysis
Print
Save
E-mail