1.Research Advances on Strategies to Promote Homing and Engraftment of Hematopoietic Stem Cells--Review.
Ping-Ping ZHU ; Rui-Ting WEN ; Zhi-Gang YANG
Journal of Experimental Hematology 2023;31(4):1229-1232
The homing and engraftment of hematopoietic stem cells (HSC) into bone marrow is the first critical step for successful clinical hematopoietic stem cell transplantation (HSCT). SDF-1 / CXCR4 is considered to be a very promising target to promote HSC homing. In recent years, with the in-depth research on the HSC homing, a variety of new strategies for promoting HSC homing and engraftment have been explored, such as nuclear hormone receptor, histone deacetylase inhibitor, prostaglandin and metabolic regulation, so as to increase the success rate of HSCT and improve the survival of patients. In this review, the recent research advances in the mechanism of HSC homing and strategies to promote HSC homing and engraftment were summarized and discussed.
Humans
;
Hematopoietic Stem Cells/physiology*
;
Bone Marrow
;
Hematopoietic Stem Cell Transplantation
;
Gene Expression Regulation
;
Prostaglandins/metabolism*
2.The role of cyclooxygenase-2/prostanoid pathway in visceral pain induced liver stress response in rats.
Donald PISTON ; Shan WANG ; Yi FENG ; Ying-jiang YE ; Jing ZHOU ; Ke-wei JIANG ; Feng XU ; Yong ZHAO ; Zhi-rong CUI
Chinese Medical Journal 2007;120(20):1813-1819
BACKGROUNDCyclooxygenase (COX) is the rate-limiting enzyme in the production of prostanoids from arachidonic acid. COX-2 is the inducible enzyme in the COX family, together with the prostanoids forms the COX-2/prostanoid pathway. Research showed that the COX-2/prostanoid pathway is activated in hepatic diseases and liver stress reaction, such as fibrogenesis, portal hypertension, carcinogenesis, and ischemic/reperfusion injury. But there was no report on visceral pain induced liver stress. This study was to investigate the role of the COX-2/prostanoid pathway in liver stress response in rat acute colitis visceral pain liver stress model.
METHODSFifty-three male SD rats were randomly divided into Naive, Model, NS398 treatment, and Morphine treatment groups. The rat acute colitis visceral pain liver stress model was established under anesthesia by the colonic administration of 0.5 ml of 6% acetic acid using a urethral catheter. NS398 and morphine were administrated 30 minutes prior to model establishment in NS398 and Morphine treatment groups respectively. Spontaneous activities and pain behavior were counted and the extent of colonic inflammation was assessed histologically. Liver tissue levels of Glutathione-S-Transferase (GST) activity, COX-2 mRNA, prostaglandin E2 (PGE2), thromboxane B2 (TXB2) and 6-Ketone-prostaglandin F1alpha (6-K-PGF1alpha) contents were assessed.
RESULTSThirty minutes after the colonic administration of acetic acid, a significant decrease in spontaneous activities and an increase in pain behaviors were observed in Model group (P < 0.01 and P < 0.05 respectively), accompanied by colonic inflammation. Liver GST activity levels significantly dropped (P < 0.05). Liver COX-2 mRNA expression significantly increased, accompanied by an increase in liver concentrations of PGE2 and TXB2, but no obvious change in 6-K-PGF1alpha concentrations. NS398 and morphine both ameliorated post-stress liver GST activity (P < 0.05 and P < 0.01 respectively), decreased stress-induced COX-2 expression, decreased PGE2 and TXB2 production, but increased liver 6-K-PGF1alpha levels. Morphine attenuation in colonic tissue inflammation was apparent at 24 hours (P < 0.05).
CONCLUSIONSAcute colitis visceral pain liver stress can induce liver injury. Liver injury might have occurred through the activation of the COX-2/prostanoid pathway and increased production of PGE2 and TXB2. Effective analgesia might offer protective effect during visceral pain stress.
Acute Disease ; Animals ; Colitis ; physiopathology ; Cyclooxygenase 2 ; physiology ; Hyperalgesia ; physiopathology ; Liver ; metabolism ; Liver Diseases ; physiopathology ; Male ; Morphine ; pharmacology ; Nitrobenzenes ; pharmacology ; Prostaglandins ; physiology ; Rats ; Rats, Sprague-Dawley ; Sulfonamides ; pharmacology
3.Role of Prostaglandins in Colon Cancer.
The Korean Journal of Gastroenterology 2008;51(5):274-279
Colon cancer is one of the major leading causes of cancer-related deaths in the Western countries. In Korea, the incidence of colon cancer is increasing due to changes in environment and lifestyle such as diet. Chemoprevention strategy using non-steroidal anti-inflammatory drugs (NSAIDs) has been under intensive clinical and epidemiological research as these drugs suppress colorectal cancer. The best known targets of NSAIDs are cyclooxygenase (COX) enzymes, which convert arachidonic acid to prostaglandins (PGs) and thromboxane. Among these PGs, prostaglandin E2 (PGE2) can promote tumor growth by binding its receptors and activating signal pathways which control cell proliferation, migration, apoptosis, and angiogenesis. Therefore, COX inhibition is promising approach for chemoprevention of colorectal cancer. However, the prolonged use of COX-2 inhibitors is associated with unacceptable cardiovascular side effects. Thus, new targets involved in PGs metabolism are under investigation. 15-hydroxyprostaglandin dehydrogenase (15-PGDH), a key metabolic enzyme of PGE2, was up-regulated in normal colonic epithelium, but decreased in colon cancer. Recent findings suggest that 15-PGDH is involved in the neoplastic progression of initiated colonic epithelial cells. Also, new players related with PGs metabolism including prostaglandin transporter (PGT) and microsomal prostaglandin E synthase (mPGES) were reported to play a role in colorectal cancer development. This review presents current knowledge about the role of prostaglandins and associated proteins in colorectal cancer development and progression.
Anti-Inflammatory Agents, Non-Steroidal/therapeutic use
;
Colonic Neoplasms/drug therapy/*etiology/prevention & control
;
Cyclooxygenase 2/metabolism
;
Cyclooxygenase Inhibitors/pharmacology/therapeutic use
;
Humans
;
Hydroxyprostaglandin Dehydrogenases/antagonists & inhibitors/metabolism
;
Prostaglandins/metabolism/*physiology