1.Methyl-beta-cyclodextrin inhibits cell growth and cell cycle arrest via a prostaglandin E(2) independent pathway.
Young Ae CHOI ; Byung Rho CHIN ; Dong Hoon RHEE ; Han Gon CHOI ; Hyeun Wook CHANG ; Jung Hye KIM ; Suk Hwan BAEK
Experimental & Molecular Medicine 2004;36(1):78-84
Methyl-beta-cyclodextrin, a cyclic oligosaccharide known for its interaction with the plasma membrane induces several events in cells including cell growth and anti-tumor activity. In this study, we have investigated the possible role of cyclooxygenase 2 (COX-2) in cell growth arrest induced by methyl-beta-cyclodextrin in Raw264.7 macrophage cells. Methyl-beta-cyclodextrin inhibited cell growth and arrested the cell cycle, and this cell cycle arrest reduced the population of cells in the S phase, and concomitantly reduced cyclin A and D expressions. Methyl-beta-cyclodextrin in a dose- and time-dependent manner, also induced COX-2 expression, prostaglandin E(2) (PGE(2)) synthesis, and COX-2 promoter activity. Pretreatment of cells with NS398, a COX-2 specific inhibitor completely blocked PGE(2) synthesis induced by methyl-beta-cyclodextrin, however inhibition on cell proliferation and cell cycle arrest was not effected, suggesting non-association of COX-2 in the cell cycle arrest. These results suggest that methyl-beta-cyclodextrin induced cell growth inhibition and cell cycle arrest in Raw264.7 cells may be mediated by cyclin A and D1 expression.
Animals
;
Cell Cycle/drug effects/*physiology
;
Cell Line
;
Cell Proliferation/*drug effects
;
Dinoprostone/*metabolism
;
Dose-Response Relationship, Drug
;
Isoenzymes/genetics/*metabolism
;
Macrophages/cytology/*drug effects/physiology
;
Mice
;
Prostaglandin-Endoperoxide Synthase/genetics/*metabolism
;
Research Support, Non-U.S. Gov't
;
beta-Cyclodextrins/*pharmacology
2.Effect of Triptolide on TNFalpha-induced activation of NF-kappaB and expression of COX-2 and iNOS in human rheumatoid arthritis synovial fibroblasts.
Xue-ting SHAO ; Lei FENG ; Hang-ping YAO ; Wen-ji SUN ; Li-huang ZHANG
Journal of Zhejiang University. Medical sciences 2004;33(2):160-165
OBJECTIVETo explore the effects of Triptolide (TP) on TNFalpha-induced cell proliferation and expressions of cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS) and their inducing products PGE2, NO in human rheumatoid arthritis synovial fibroblasts (RASF).
METHODSFibroblasts (RASF) were obtained from synovial tissue of patients with RA and were cultured in vitro. RASF were stimulated with TNFalpha(20 microg/L) in the presence or absence of TP(0 - 100 microg/L) for 20 h. The RASF proliferation was determined by (3)H-TdR incorporation, and the productions of PGE2 and NO in culture supernatants of RASF were detected with competitive ELISA and enzyme reduction of nitrate. Expressions of COX-2 and iNOS mRNA in RASF were analyzed by semi-quantitative RT-PCR. Expressions of COX-2 and iNOS protein were estimated by Western-blot method and cellular enzyme immunoassay in synovial fibroblasts. NF-kappaB activity in whole-cell extract of RASF was also measured by an ELISA-based method.
RESULTSTP (>20 microg/L) down-regulated markedly TNFalpha-induced COX-2 and iNOS mRNA and protein expression, and their inducing products PGE2 and NO of synovial fibroblasts. This effect was positively correlated with TP concentrations. NF-kappaB activity in TNFalpha-stimulated synovial cells was suppressed profoundly by TP treatment (IC(50) approximately 35microg/L). The activity of NF-kappaB was correlated with the levels of COX-2 and iNOS expression in TNFalpha-stimulated RASF. No change was observed in proliferation of synovial cells after treatment of TP.
CONCLUSIONTP could significantly down-regulate TNFalpha-induced COX-2, iNOS expression and production of PGE2, NO in human RASF, which is associated with the suppression of NF-kappaB activity.
Arthritis, Rheumatoid ; drug therapy ; metabolism ; Cyclooxygenase 2 ; Diterpenes ; pharmacology ; Epoxy Compounds ; Fibroblasts ; metabolism ; Gene Expression Regulation ; drug effects ; Humans ; Isoenzymes ; analysis ; genetics ; Membrane Proteins ; NF-kappa B ; metabolism ; Nitric Oxide Synthase ; analysis ; genetics ; Nitric Oxide Synthase Type II ; Phenanthrenes ; pharmacology ; Prostaglandin-Endoperoxide Synthases ; analysis ; genetics ; RNA, Messenger ; analysis ; Synovial Membrane ; cytology ; metabolism ; Tumor Necrosis Factor-alpha ; pharmacology