1.Agmatine protection against chlorpromazine-induced forebrain cortex injury in rats.
Bratislav DEJANOVIC ; Ivana STEVANOVIC ; Milica NINKOVIC ; Ivana STOJANOVIC ; Irena LAVRNJA ; Tatjana RADICEVIC ; Milos PAVLOVIC
Journal of Veterinary Science 2016;17(1):53-61
This study was conducted to investigate whether agmatine (AGM) provides protection against oxidative stress induced by treatment with chlorpromazine (CPZ) in Wistar rats. In addition, the role of reactive oxygen species and efficiency of antioxidant protection in the brain homogenates of forebrain cortexes prepared 48 h after treatment were investigated. Chlorpromazine was applied intraperitoneally (i.p.) in single dose of 38.7 mg/kg body weight (BW) The second group was treated with both CPZ and AGM (75 mg/kg BW). The control group was treated with 0.9% saline solution in the same manner. All tested compounds were administered i.p. in a single dose. Rats were sacrificed by decapitation 48 h after treatment Treatment with AGM significantly attenuated the oxidative stress parameters and restored antioxidant capacity in the forebrain cortex. The data indicated that i.p. administered AGM exerted antioxidant action in CPZ-treated animals. Moreover, reactive astrocytes and microglia may contribute to secondary nerve-cell damage and participate in the balance of destructive vs. protective actions involved in the pathogenesis after poisoning.
Agmatine/*pharmacology
;
Animals
;
Antioxidants/pharmacology
;
Chlorpromazine/toxicity
;
Oxidative Stress/*drug effects
;
Prosencephalon/*drug effects
;
Rats
;
Rats, Wistar
2.Effectiveness of propofol pretreatment on the extent of deranged cerebral mitochondrial oxidative enzyme system after incomplete forebrain ischemia/reperfusion in rats .
Younsuk LEE ; Choonkun CHUNG ; Yong Seok OH
Journal of Korean Medical Science 2000;15(6):627-630
It has been suggested that propofol has the protective effect on cerebral ischemia-reperfusion injury. The aim of this study is to evaluate the effect of propofol pretreatment on incomplete forebrain ischemia-reperfusion injury in rats. Thirty Sprague-Dawley rats were anesthetized with isoflurane in oxygen and randomly allocated into propofol group (n=13) and saline group (n=17). In propofol group, propofol was pretreated in a step-down scheme before inducing forebrain ischemia by occlusion of both common carotid arteries and arterial hypotension. After ischemia (20 min) and reperfusion (30 min), rats were decapitated. Brain was sliced to obtain coronal slices of 4-12 mm from frontal pole, which were reacted with 2% 2,3,5-triphenyl-2H-tetrazolium chloride (TTC) for 10 min to differentiate the damaged tissues from normal tissues. Median (interquartile range) values of the average percent infarct area were 0.0 (8.6)% and 20.1 (41.2)% in propofol and saline groups, respectively. There was significant difference between the groups. In conclusion, propofol may have a protective effect on incomplete forebrain ischemia-reperfusion injury.
Animal
;
Brain Ischemia/prevention & control*
;
Brain Ischemia/pathology
;
Cerebral Infarction/prevention & control
;
Cerebral Infarction/pathology
;
Disease Models, Animal
;
Free Radical Scavengers/pharmacology*
;
Mitochondria/enzymology*
;
Neuroprotective Agents/pharmacology*
;
Oxidative Phosphorylation
;
Propofol/pharmacology*
;
Prosencephalon/metabolism
;
Prosencephalon/injuries
;
Prosencephalon/drug effects*
;
Rats
;
Rats, Sprague-Dawley
;
Reperfusion Injury/prevention & control*
;
Reperfusion Injury/pathology
;
Tetrazolium Salts
3.Effect of intracerebroventricular injection of adrenomedullin on catecholaminergic neurons and expression of c-fos in the rat brain nuclei involved in cardiovascular regulation.
Shu-mei JI ; Sheng-ai HU ; Rui-rong HE
Chinese Journal of Applied Physiology 2005;21(2):146-149
AIM AND METHODSUsing double immunohistochemical method for Fos and tyrosine hydroxylase(TH) to examine the effects of intracerebroventricular (icv) administration of adrenomedullin (AM) on catecholaminergic neurons and the expression of c-fos gene in rat brain nuclei involved in cardiovascular regulation in order to define whether the effects of central administration of adrenomedullin (AM) were induced by activating the catecholaminergic neurons.
RESULTS(1) Following icy administration of AM (3 nmol/kg), Fos-like immunoreactivity neurons were markedly increased in several brain areas of the rat, including the brainstem, the hypothalamus and the forebrain. (2) Following icy administration of AM (3 nmol/kg), double-labeled neurons for Fos and TH increased significantly in the area postrema (AP), the nucleus of the solitary tract (NTS), the nucleus paragigantocellularis lateralis (PGL) and the locus coeruleus (LC). (3) Pretreatment with calcitonin gene-related peptide receptor antagonism CGRP (8-37) (30 nmol/kg) significantly reduced the action of AM (3 nmol/kg) in the brain.
CONCLUSIONAM activates the nuclei involved in cardiovascular regulation in the forebrain, the hypothalamus and the brainstem, and that the central actions of AM are induced by activating the catecholaminergic neurons of brainstem nuclei involved in cardiovascular regulation. CGRP receptor can mediate the effects of AM in brain.
Adrenomedullin ; administration & dosage ; pharmacology ; Animals ; Brain Stem ; drug effects ; Calcitonin Gene-Related Peptide ; metabolism ; Hypothalamus ; drug effects ; Male ; Neurons ; drug effects ; metabolism ; Peptide Fragments ; metabolism ; Prosencephalon ; drug effects ; metabolism ; Proto-Oncogene Proteins c-fos ; metabolism ; Rats ; Rats, Sprague-Dawley ; Tyrosine 3-Monooxygenase ; metabolism
4.Effects of L-NAME, a non-specific nitric oxide synthase inhibitor, on AlCl3-induced toxicity in the rat forebrain cortex.
Ivana D STEVANOVIC ; Marina D JOVANOVIC ; Ankica JELENKOVIC ; Miodrag COLIC ; Ivana STOJANOVIC ; Milica NINKOVIC
Journal of Veterinary Science 2009;10(1):15-22
The present experiments were done to determine the effectiveness of a non-specific nitric oxide synthase inhibitor, N-nitro-L-arginine methyl ester (L-NAME), on oxidative stress parameters induced by aluminium chloride (AlCl3) intrahippocampal injections in Wistar rats. Animals were sacrificed 3 h and 30 d after treatments, heads were immediately frozen in liquid nitrogen and forebrain cortices were removed. Crude mitochondrial fraction preparations of forebrain cortices were used for the biochemical analyses: nitrite levels, superoxide production, malondialdehyde concentrations, superoxide dismutase (SOD) activities and reduced glutathione contents. AlCl3 injection resulted in increased nitrite concentrations, superoxide anion production, malondialdehyde concentrations and reduced glutathione contents in the forebrain cortex, suggesting that AlCl3 exposure promoted oxidative stress in this brain structure. The biochemical changes observed in neuronal tissues showed that aluminium acted as a pro-oxidant. However, the non-specific nitric oxide synthase (NOS) inhibitor, L-NAME, exerted anti-oxidant actions in AlCl3-treated animals. These results revealed that NO-mediated neurotoxicity due to intrahippocampal AlCl3 injection spread temporally and spatially to the forebrain cortex, and suggested a potentially neuroprotective effect for L-NAME.
Aluminum Compounds/*toxicity
;
Animals
;
Chlorides/*toxicity
;
Glutathione/metabolism
;
Male
;
Malondialdehyde
;
NG-Nitroarginine Methyl Ester/*pharmacology
;
Nitric Oxide Synthase/*antagonists & inhibitors
;
Nitrites/chemistry/metabolism
;
Prosencephalon/*drug effects
;
Rats
;
Rats, Wistar
;
Superoxide Dismutase/metabolism
;
Superoxides/metabolism
5.Influence of acute ethanol intoxication on neuronal apoptosis and Bcl-2 protein expression after severe traumatic brain injury in rats.
Min HE ; Wei-Guo LIU ; Liang WEN ; Hang-Gen DU ; Li-Chun YIN ; Li CHEN
Chinese Journal of Traumatology 2013;16(3):136-139
OBJECTIVETo study the influence and mechanism of acute ethanol intoxication (AEI) on rat neuronal apoptosis after severe traumatic brain injury (TBI).
METHODSNinety-six Sprague-Dawley rats were randomly divided into four groups: normal control, AEI-only, TBI-only and TBI+AEI (n equal to 24 for each). Severe TBI model was developed according to Feeney's method. Rats in TBI+AEI group were firstly subjected to AEI, and then suffered head trauma. In each group, animals were sacrificed at 6 h, 24 h, 72 h, and 168 h after TBI. The level of neuronal apoptosis and the expression of Bcl-2 protein were determined by TUNEL assay and immunohistochemical method, respectively.
RESULTSApoptotic cells mainly distributed in the cortex and white matter around the damaged area. Neuronal apoptosis significantly increased at 6 h after trauma and peaked at 72 h. Both the level of neuronal apoptosis and expression of Bcl-2 protein in TBI-only group and TBI+AEI group were higher than those in control group (P less than 0.05). Compared with TBI-only group, the two indexes were much higher in TBI+AEI group at all time points (P less than 0.05).
CONCLUSIONOur findings suggest that AEI can increase neuronal apoptosis after severe TBI.
Animals ; Apoptosis ; drug effects ; Brain Injuries ; Cerebral Cortex ; cytology ; Disease Models, Animal ; Ethanol ; poisoning ; Immunohistochemistry ; In Situ Nick-End Labeling ; Male ; Neurons ; physiology ; Prosencephalon ; cytology ; Proto-Oncogene Proteins c-bcl-2 ; metabolism ; Rats ; Rats, Sprague-Dawley
6.Protective effects of transduced Tat-DJ-1 protein against oxidative stress and ischemic brain injury.
Hoon Jae JEONG ; Dae Won KIM ; Mi Jin KIM ; Su Jung WOO ; Hye Ri KIM ; So Mi KIM ; Hyo Sang JO ; Hyun Sook HWANG ; Duk Soo KIM ; Sung Woo CHO ; Moo Ho WON ; Kyu Hyung HAN ; Jinseu PARK ; Won Sik EUM ; Soo Young CHOI
Experimental & Molecular Medicine 2012;44(10):586-593
Reactive oxygen species (ROS) contribute to the development of a number of neuronal diseases including ischemia. DJ-1, also known to PARK7, plays an important role in transcriptional regulation, acting as molecular chaperone and antioxidant. In the present study, we investigated whether DJ-1 protein shows a protective effect against oxidative stress-induced neuronal cell death in vitro and in ischemic animal models in vivo. To explore DJ-1 protein's potential role in protecting against ischemic cell death, we constructed cell permeable Tat-DJ-1 fusion proteins. Tat-DJ-1 protein efficiently transduced into neuronal cells in a dose- and time-dependent manner. Transduced Tat-DJ-1 protein increased cell survival against hydrogen peroxide (H2O2) toxicity and also reduced intracellular ROS. In addition, Tat-DJ-1 protein inhibited DNA fragmentation induced by H2O2. Furthermore, in animal models, immunohistochemical analysis revealed that Tat-DJ-1 protein prevented neuronal cell death induced by transient forebrain ischemia in the CA1 region of the hippocampus. These results demonstrate that transduced Tat-DJ-1 protein protects against cell death in vitro and in vivo, suggesting that the transduction of Tat-DJ-1 may be useful as a therapeutic agent for ischemic injuries related to oxidative stress.
Animals
;
Blood-Brain Barrier/metabolism
;
Brain Ischemia/*metabolism/pathology/prevention & control
;
CA1 Region, Hippocampal/drug effects/metabolism/pathology
;
Cell Line, Tumor
;
Cell Survival/drug effects
;
Gerbillinae
;
Intracellular Signaling Peptides and Proteins/*administration & dosage/biosynthesis/pharmacokinetics
;
Lipid Peroxidation
;
Malondialdehyde/metabolism
;
Mice
;
Neuroprotective Agents/*administration & dosage/pharmacokinetics
;
Oncogene Proteins/*administration & dosage/biosynthesis/pharmacokinetics
;
*Oxidative Stress
;
Prosencephalon/drug effects/metabolism/pathology
;
Rats
;
Recombinant Fusion Proteins/*administration & dosage/biosynthesis/pharmacokinetics
;
tat Gene Products, Human Immunodeficiency Virus/*administration & dosage/biosynthesis/pharmacokinetics