1.Determination of oxaprozin in human plasma with high performance liquid chromatography (HPLC) and its application.
Mian MAO ; Ling WANG ; Xuehua JIANG ; Lin YANG
Journal of Biomedical Engineering 2013;30(3):646-650
The present research was aimed to develop a high performance liquid chromatography (HPLC) method to determine oxaprozin in plasma and to evaluate the bioavailability of two oxaprozin enteric coated tablets. A C18 column was used to separate the plasma after protein precipitation and the mobile phase was methanol-12. 5mmol/L ammonium acetate buffer solution (pH=3.0)(71:29). The calibration curve was linear in the concentration range of 0. 50-70. 56 microg . mL-1, and the intra and inter-day RSDs were less than 12. 33% and 10. 42% respectively. A single dose of 0. 4 g reference preparation or test preparation of oxaprozin enteric coated tablets was administered to 20 healthy volunteers according to a randomized crossover study. AUC0-->264h were (4 917. 44 +/- 629. 57) microg . h . mL-1 and (4 604. 30+/-737. 83) microg . h . mL-1, respectively; Cmax were (52. 34+/-7. 68) microg . mL-1 and (48. 66+/-4. 87) microg . mL-1, respectively; Tmax were (18. 70+/-2.27) h and (19. 30+/-1. 63) h, respectively; The relative bioavailability of test preparation was 94.0% +/- 13. 7%. The method is simple, rapid and selective for oxaprozin determination. There is no significant difference in the main pharmacokinetic parameters between the test formulation and reference formulation and the two formulations are in bioequivalence.
Anti-Inflammatory Agents, Non-Steroidal
;
blood
;
pharmacokinetics
;
Biological Availability
;
Chromatography, High Pressure Liquid
;
Cross-Over Studies
;
Humans
;
Propionates
;
administration & dosage
;
blood
;
pharmacokinetics
;
Tablets, Enteric-Coated
2.The Toxicity of Nonsteroidal Anti-inflammatory Eye Drops against Human Corneal Epithelial Cells in Vitro.
Jong Soo LEE ; Young Hi KIM ; Young Min PARK
Journal of Korean Medical Science 2015;30(12):1856-1864
This study investigated the toxicity of commercial non-steroid anti-inflammatory drug (NSAID) eye solutions against corneal epithelial cells in vitro. The biologic effects of 1/100-, 1/50-, and 1/10-diluted bromfenac sodium, pranoprofen, diclofenac sodium, and the fluorometholone on corneal epithelial cells were evaluated after 1-, 4-, 12-, and 24-hr of exposure compared to corneal epithelial cell treated with balanced salt solution as control. Cellular metabolic activity, cellular damage, and morphology were assessed. Corneal epithelial cell migration was quantified by the scratch-wound assay. Compared to bromfenac and pranoprofen, the cellular metabolic activity of diclofenac and fluorometholone significantly decreased after 12-hr exposure, which was maintained for 24-hr compared to control. Especially, at 1/10-diluted eye solution for 24-hr exposure, the LDH titers of fluorometholone and diclofenac sodium markedly increased more than those of bromfenac and pranoprofen. In diclofenac sodium, the Na+ concentration was lower and amount of preservatives was higher than other NSAIDs eye solutions tested. However, the K+ and Cl- concentration, pH, and osmolarity were similar for all NSAIDs eye solutions. Bromfenac and pranoprofen significantly promoted cell migration, and restored wound gap after 48-hr exposure, compared with that of diclofenac or fluorometholone. At 1/50-diluted eye solution for 48-hr exposure, the corneal epithelial cellular morphology of diclofenac and fluorometholone induced more damage than that of bromfenac or pranoprofen. Overall, the corneal epithelial cells in bromfenac and pranoprofen NSAID eye solutions are less damaged compared to those in diclofenac, included fluorometholone as steroid eye solution.
Anti-Inflammatory Agents, Non-Steroidal/administration & dosage/*toxicity
;
Benzophenones/administration & dosage/toxicity
;
Benzopyrans/administration & dosage/toxicity
;
Bromobenzenes/administration & dosage/toxicity
;
Cell Movement/drug effects
;
Cells, Cultured
;
Diclofenac/administration & dosage/toxicity
;
Epithelial Cells/drug effects/metabolism/ultrastructure
;
Epithelium, Corneal/cytology/*drug effects/metabolism
;
Fluorometholone/administration & dosage/toxicity
;
Humans
;
L-Lactate Dehydrogenase/metabolism
;
Microscopy, Electron, Transmission
;
Ophthalmic Solutions
;
Propionates/administration & dosage/toxicity