1.Hypoxia-inducible factor-prolyl hydroxylase inhibitors in treatment of anemia with chronic disease.
Zuolin LI ; Lan SHEN ; Yan TU ; Shun LU ; Bicheng LIU
Chinese Medical Journal 2025;138(12):1424-1432
Anemia of chronic disease (ACD) is the most frequent clinical issue in patients with chronic disease. ACD is usually secondary to chronic kidney disease (CKD), cancer, and chronic infection, which is associated with poor health outcomes, increased morbidity and mortality, and substantial economic costs. Current treatment options for ACD are very limited. The discovery of the hypoxia-inducible factor-prolyl hydroxylase (HIF-PHD) pathway made it possible to develop novel therapeutic agents (such as hypoxia-inducible factor-prolyl hydroxylase inhibitor, HIF-PHI) to treat ACD by stabilizing HIF and subsequently promoting endogenous erythropoietin (EPO) production and iron absorption and utilization. Thus, HIF-PHIs appear to open a new door for the treatment of ACD patients with a novel mechanism. Here, we comprehensively reviewed the latest advancements in the application of HIF-PHIs in ACD. Specifically, we highlighted the key features of HIF-PHIs on ACD, such as stimulation of endogenous EPO, handling iron metabolism, inflammation-independent, and prolonging lifespan of red blood cells. In conclusion, the success of HIF-PHIs in the treatment of ACD may expand the therapeutic opportunity for other types of anemia beyond renal anemia.
Humans
;
Anemia/metabolism*
;
Chronic Disease
;
Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism*
;
Erythropoietin/metabolism*
;
Prolyl-Hydroxylase Inhibitors/therapeutic use*
;
Animals
;
Renal Insufficiency, Chronic
2.Hyperprolinemia type Ⅰ caused by PRODH gene variation: 2 cases report and literature review.
Zhen Hua XIE ; Xian LI ; Meng Jun XIAO ; Jing LIU ; Qiang ZHANG ; Zhen Kun ZHANG ; Yan Ling YANG ; Hai Jun WANG ; Yong Xing CHEN ; Yao Dong ZHANG ; Dong Xiao LI
Chinese Journal of Pediatrics 2023;61(10):935-937
3.Similarities and differences of myocardial metabolic characteristics between HFpEF and HFrEF mice based on LC-MS/MS metabolomics.
Zhan Yi ZHANG ; Xue Ying FENG ; Zi Hao WANG ; Yu Zhi HUANG ; Wen Bo YANG ; Wen Jiao ZHANG ; Juan ZHOU ; Zu Yi YUAN
Chinese Journal of Cardiology 2023;51(7):722-730
Objective: To reveal the similarities and differences in myocardial metabolic characteristics between heart failure with preserved ejection fraction (HFpEF) and heart failure with reduced ejection fraction (HFrEF) mice using metabolomics. Methods: The experimental mice were divided into 4 groups, including control, HFpEF, sham and HFrEF groups (10 mice in each group). High fat diet and Nω-nitroarginine methyl ester hydrochloride (L-NAME) were applied to construct a"two-hit"HFpEF mouse model. Transverse aortic constriction (TAC) surgery was used to construct the HFrEF mouse model. The differential expression of metabolites in the myocardium of HFpEF and HFrEF mice was detected by untargeted metabolomics (UHPLC-QE-MS). Variable importance in projection>1 and P<0.05 were used as criteria to screen and classify the differentially expressed metabolites between the mice models. KEGG functional enrichment and pathway impact analysis demonstrated significantly altered metabolic pathways in both HFpEF and HFrEF mice. Results: One hundred and nine differentially expressed metabolites were detected in HFpEF mice, and 270 differentially expressed metabolites were detected in HFrEF mice. Compared with the control group, the most significantly changed metabolite in HFpEF mice was glycerophospholipids, while HFrEF mice presented with the largest proportion of carboxylic acids and their derivatives. KEGG enrichment and pathway impact analysis showed that the differentially expressed metabolites in HFpEF mice were mainly enriched in pathways such as biosynthesis of unsaturated fatty acids, ether lipid metabolism, amino sugar and nucleotide sugar metabolism, glycerophospholipid metabolism, arachidonic acid metabolism and arginine and proline metabolism. The differentially expressed metabolites in HFrEF mice were mainly enriched in arginine and proline metabolism, glycine, serine and threonine metabolism, pantothenate and CoA biosynthesis, glycerophospholipid metabolism, nicotinate and nicotinamide metabolism and arachidonic acid metabolism, etc. Conclusions: HFpEF mice have a significantly different myocardial metabolite expression profile compared with HFrEF mice. In addition, biosynthesis of unsaturated fatty acids, arachidonic acid metabolism, glycerophospholipid metabolism and arginine and proline metabolism are significantly altered in both HFpEF and HFrEF mice, suggesting that these metabolic pathways may play an important role in disease progression in both types of heart failure.
Mice
;
Animals
;
Heart Failure/metabolism*
;
Stroke Volume
;
Chromatography, Liquid
;
Tandem Mass Spectrometry
;
Metabolomics
;
Arachidonic Acids
;
Proline
4.Meta-analysis of Ac-SDKP inhibition of Pulmonary fibrosis in animal models.
Hai Bo GONG ; Cheng Mei ZHANG ; Xin Yan TANG ; Ruo Bing GONG ; Zhi Ying MIAO ; Hai Jing DENG
Chinese Journal of Industrial Hygiene and Occupational Diseases 2023;41(4):262-270
Objective: To systematically study the anti-fibrotic effect of N-acetyl-seryl-as partyl-lysyl-proline (Ac-SDKP) on pulmonary fibrosis. Methods: In May 2021, a computer search was performed on CNKI, Wanfang Knowledge Service Platform, VIP.com, China Biomedical Literature Database, Pubmed, OVID and other databases. The retrieval time was from January 2008 to May 2021. Randomized controlled experiments on the inhibition of pulmonary fibrosis by Ac-SDKP were screened. The control group was the pulmonary fibrosis model group and the experimental group was the Ac-SDKP treatment group. The quality of the literature was assessed using the syrcle risk of bias assessment tool, and data were extracted. Data analysis was Performed using revman 5.4 software. Results: 18 papers were included, with a total of 428 animal models. The results of meta analysis showed that the contents of α-smooth muscle actin (α-SMA), type I collagen, type Ⅲ collagen, transforming growth factor-β (TGF-β) and Nodule area in the exPerimental group were lower than those in the control grouP. [SMD=-2.44, 95%CI (-3.71--1.17), P=0.000][SMD=-5.36, 95%CI (-7.13--3.59), P=0.000] [SMD=-3.07, 95%CI (-4.13--2.02), P<0.000][SMD=-2.88, 95%CI (-3.63--2.14), P=0.000] [SMD=-1.80, 95%CI (-2.42--1.18), P=0.000], the content of hydroxy proline in the experimental group was higher than that in the control group [SMD=7.62, 95%CI (4.90-10.33), P=0.000], all indexes included in the literature were statistically significant. Conclusion: Ac-SDKP has obvious inhibitory effect on the process of pulmonary fibrosis, and may become a new clinical drug for the treatment of pulmonary fibrosis.
Rats
;
Animals
;
Pulmonary Fibrosis
;
Rats, Wistar
;
Fibrosis
;
Disease Models, Animal
;
Proline
5.LC-MS fingerprint and multi-indicator components analysis of classical formula Gualou Xiebai Banxia Decoction.
Xiao-Lin CHEN ; Xue-Chun WANG ; Guo-Yu BAI ; Yi-Ran ZHAO ; Hao-Yuan ZENG ; Cheng-Feng GAO ; Na LI ; Ying XIAO ; Xi-Qing BIAN
China Journal of Chinese Materia Medica 2023;48(16):4381-4393
This study developed an optimal pre-processing technique for the reference substance of the classic formula Gualou Xiebai Banxia Decoction(GXBD) and established a comprehensive quality control method for GXBD reference substance to provide a reference for its overall quality evaluation. The authors prepared 15 batches of GXBD samples and innovatively used the extracted ion chromatogram under the base peak chromatogram mode to establish a liquid chromatography-mass spectrometry(LC-MS) fingerprint, identify characteristic peaks, and perform quantitative analysis of indicator components. The yield of the 15 batches of GXBD samples ranged from 50.28% to 76.20%. In the positive ion mode, 12 common characteristic peaks were detected in the LC-MS fingerprint, and the structures of five common peaks were identified by comparison with reference standards. The similarity between the fingerprint profiles of different batches of samples and the reference fingerprint profile ranged from 0.920 to 0.984. Finally, liquid chromatography-triple quadrupole mass spectrometry(LC-QQQ/MS) in multiple reaction monitoring(MRM) mode was used to determine the content of eight indicator components in GXBD, including loliolide, chrysoeriol, rutin, cucurbitacin D, macrostemonoside Ⅰ, 25S-timosaponin B Ⅱ, 25R-timosaponin B Ⅱ, and peptide proline-tryptophan-valine-proline-glycine(PWVPG). The method established in this study can reduce matrix interference in the compound, and it has good accuracy, stability, and practical value. It effectively reflects the quality attributes of GXBD samples and can be used for the comprehensive quality control of GXBD.
Chromatography, Liquid
;
Tandem Mass Spectrometry/methods*
;
Drugs, Chinese Herbal/chemistry*
;
Proline
;
Chromatography, High Pressure Liquid/methods*
6.Small-molecule anti-COVID-19 drugs and a focus on China's homegrown mindeudesivir (VV116).
Qiuyu CAO ; Yi DING ; Yu XU ; Mian LI ; Ruizhi ZHENG ; Zhujun CAO ; Weiqing WANG ; Yufang BI ; Guang NING ; Yiping XU ; Ren ZHAO
Frontiers of Medicine 2023;17(6):1068-1079
The coronavirus disease 2019 (COVID-19) pandemic has stimulated tremendous efforts to develop therapeutic agents that target severe acute respiratory syndrome coronavirus 2 to control viral infection. So far, a few small-molecule antiviral drugs, including nirmatrelvir-ritonavir (Paxlovid), remdesivir, and molnupiravir have been marketed for the treatment of COVID-19. Nirmatrelvir-ritonavir has been recommended by the World Health Organization as an early treatment for outpatients with mild-to-moderate COVID-19. However, the existing treatment options have limitations, and effective treatment strategies that are cost-effective and convenient for tackling COVID-19 are still needed. To date, four domestically developed oral anti-COVID-19 drugs have been granted conditional market approval in China. These drugs include azvudine, simnotrelvir-ritonavir (Xiannuoxin), leritrelvir, and mindeudesivir (VV116). Preclinical and clinical studies have explored the efficacy and tolerability of mindeudesivir and supported its early use in mild-to-moderate COVID-19 cases at high risk for progression. In this review, we discuss the most recent findings regarding the pharmacological mechanism and therapeutic effects focusing on mindeudesivir and other small-molecule antiviral agents for COVID-19. These findings will expand our understanding and highlight the potential widespread application of China's homegrown anti-COVID-19 drugs.
Humans
;
Ritonavir/therapeutic use*
;
COVID-19
;
Antiviral Agents/therapeutic use*
;
China
;
Nitriles
;
Lactams
;
Proline
;
Adenosine/analogs & derivatives*
;
Leucine
7.Screening, functional analysis and clinical validation of differentially expressed genes in diabetic foot ulcers.
Peng WANG ; Zhao Hui CHEN ; Li Yuan JIANG ; Xiao Qian ZHOU ; Chi Yu JIA ; Hou An XIAO
Chinese Journal of Burns 2022;38(10):944-951
Objective: To screen the differentially expressed genes (DEGs) in diabetic foot ulcers (DFUs), and to perform functional analysis and clinical validation of them, intending to lay a theoretical foundation for epigenetic therapy of chronic refractory wounds. Methods: An observational study was conducted. The gene expression profile dataset GSE80178 of DFU patients in Gene Expression Omnibus (GEO) was selected, and the DEG between three normal skin tissue samples and six DFU tissue samples in the dataset was analyzed and screened using the GEO2R tool. For the screened DEG, ClusterProfiler, org.Hs.eg.db, GOplot, and ggplot2 in the R language packages were used for Gene Ontology (GO) enrichment analysis of biological processes, molecular functions, and cellular components, and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, respectively. Protein-protein interaction (PPI) analysis was performed using STRING database to screen key genes in the DEG, and GO enrichment analysis of key genes was performed using Cytohubba plug-in in Cytoscape 3.9.1 software. DFU tissue and normal skin tissue discarded after surgery were collected respectively from 15 DFU patients (7 males and 8 females, aged 55-87 years) and 15 acute wound patients (6 males and 9 females, aged 8-52 years) who were admitted to Xiang'an Hospital of Xiamen University from September 2018 to March 2021. The mRNA and protein expressions of small proline-rich repeat protein 1A (SPRR1A) and late cornified envelope protein 3C (LCE3C) were detected by real-time fluorescent quantitative reverse transcription polymerase chain reaction and immunohistochemistry, respectively. Data were statistically analyzed with independent sample t test. Results: Compared with normal skin tissue, 492 statistically differentially expressed DEGs were screened from DFU tissue of DFU patients (corrected P<0.05 or corrected P<0.01), including 363 up-regulated DEGs and 129 down-regulated DEGs. GO terminology analysis showed that DEGs were significantly enriched in the aspects of skin development, keratinocyte (KC) differentiation, keratinization, epidermal development, and epidermal cell differentiation, etc. (corrected P values all <0.01). KEGG pathway analysis showed that DEGs were significantly enriched in the aspects of tumor-associated microRNA, Ras related protein 1 signaling pathway, and pluripotent stem cell regulatory signaling pathway, etc. (corrected P values all <0.01). PPI analysis showed that endophial protein, SPRR1A, SPRR1B, SPRR2B, SPRR2E, SPRR2F, LCE3C, LCE3E, keratin 16 (all down-regulated DEGs), and filoprotein (up-regulated DEG) were key genes of DEGs screened from DFU tissue of DFU patients, which were significantly enriched in GO terms of keratinization, KC differentiation, epidermal cell differentiation, skin development, epidermis development, and peptide cross-linking, etc. (corrected P values all <0.01). The mRNA expressions of SPRR1A and LCE3C in DFU tissue of DFU patients were 0.588±0.082 and 0.659±0.098, respectively, and the protein expressions were 0.22±0.05 and 0.24±0.04, respectively, which were significantly lower than 1.069±0.025 and 1.053±0.044 (with t values of 20.91 and 13.66, respectively, P values all <0.01) and 0.38±0.04 and 0.45±0.05 (with t values of 9.69 and 12.46, respectively, P values all <0.01) in normal skin tissue of acute wound patients. Conclusions: Compared with normal skin tissue, there is DEG profile in DFU tissue of DFU patients, with DEGs being significantly enriched in the aspects of KC differentiation and keratin function. Key DEGs are related to the biological function of KC, and their low expressions in DFU tissue of DFU patients may impede ulcer healing.
Female
;
Humans
;
Male
;
Computational Biology
;
Diabetes Mellitus/genetics*
;
Diabetic Foot/genetics*
;
Gene Expression Profiling
;
Keratin-16
;
MicroRNAs/genetics*
;
Proline
;
RNA, Messenger
;
Middle Aged
;
Aged
;
Aged, 80 and over
;
Child
;
Adolescent
;
Young Adult
;
Adult
;
Wound Healing/genetics*
8.Variations in fecal microbiota of first episode schizophrenia associated with clinical assessment and serum metabolomics.
Xue Ping WANG ; Yu Ya Nan ZHANG ; Tian Lan LU ; Zhe LU ; Zhe Wei KANG ; Yao Yao SUN ; Wei Hua YUE
Journal of Peking University(Health Sciences) 2022;54(5):863-873
OBJECTIVE:
To explore the role of the microbiota in drug naïve first-onset schizophrenia patients and to seek evidence from multidimensional longitudinal analyses of the intestinal microbiome and clinical phenotype with antipsychotic drugs (APDs) therapy.
METHODS:
In this study, 28 drug naïve first onset schizophrenia patients and age-, gender- and education-matched 29 healthy controls were included, and the patients were treated with APDs. We collected fecal and serum samples at baseline and after 6 weeks of treatment to identify the different microbiota strains and analyse their correlation with clinical symptoms and serum metabolites. The 16S rRNA genes of the gut microbiota were sequenced, and the diversity and relative abundance at the phylum and genus levels were analyzsed in detail. The PANSS score, BMI changed value, and serum metabolome were included in the data analyses.
RESULTS:
A multiomics study found a potential connection among the clinical phenotype, microbiota and metabolome. The species diversity analyses revealed that the alpha diversity index (chao1, ACE, and goods_coverage) in the schizophrenia APDs group was significantly lower than that in the control group, and the schizophrenia group had clear demarcation from the control group. The microbiota composition analysis results showed that the relative abundance of the genera of Bacteroides, Streptococcus, Romboutsia, and Eubacterium ruminantium group significantly changed after APDs treatment in the schizophrenia patients. These strains could reflect the APDs treatment effect. More genera had differences between the patient and control groups. The LEfSe analysis showed that Prevotella_9 and Bacteroides were enriched in schizophrenia, while Blautia, Dialister, and Roseburia were enriched in the control group. The correlation analysis between microbiota and clinical symptoms showed that Bifidobacterium in schizophrenia was positively correlated with the PANSS reduction rate of the general psychopathology scale. The BMI changed value was positively correlated with the alteration of Clostridium_sensu_stricto_1 during treatment and the baseline abundance of Bacteroides. Moreover, metabolomic data analysis revealed a significant correlation between specific genera and metabolites, such as L-methionine, L-proline, homovanillic acid, N-acetylserotonin, and vitamin B6.
CONCLUSION
Our study found some microbiota features in schizophrenia patients and healthy controls, and several strains were correlated with APDs effects. Furthermore, the multiomics analysis implies the intermediate role of microbiota between antipsychotic effects and serum metabolites and provides new evidence to interpret the difference from multiple levels in the pathogenesis and pharmacological mechanism of schizophrenia.
Humans
;
Antipsychotic Agents
;
Homovanillic Acid
;
Metabolomics/methods*
;
Methionine
;
Microbiota
;
Proline
;
RNA, Ribosomal, 16S/genetics*
;
Schizophrenia
;
Vitamin B 6
;
Feces
9.Advances on microbial synthesis of L-proline and trans-4-hydroxy-L-proline.
Xiaolu HU ; Shumei CUI ; Chongrong KE ; Yong TAO ; Jianzhong HUANG ; Xinwei YANG
Chinese Journal of Biotechnology 2022;38(12):4498-4519
L-proline (L-Pro) is the only imino acid among the 20 amino acids that constitute biological proteins, and its main hydroxylated product is trans-4-hydroxy-L-proline (T-4-Hyp). Both of them have unique biological activities and play important roles in biomedicine, food and beauty industry. With the in-depth exploration of the functions of L-Pro and T-4-Hyp, the demand for them is gradually increasing. Traditional methods of biological extraction and chemical synthesis are unable to meet the demand of "green, environmental protection and high efficiency". In recent years, synthetic biology has developed rapidly. Through the intensive analysis of the synthetic pathways of L-Pro and T-4-Hyp, microbial cell factories were constructed for large-scale production, which opened a new chapter for the green and efficient production of L-Pro and T-4-Hyp. This paper reviews the application and production methods of L-Pro and T-4-Hyp, the metabolic pathways for microbial synthesis of L-Pro and T-4-Hyp, and the engineering strategies and advances on microbial production of L-Pro and T-4-Hyp, aiming to provide a theoretical basis for the "green bio-manufacturing" of L-Pro and T-4-Hyp and promote their industrial production.
Proline
;
Hydroxyproline
10.Effect of Biantie pretreatment on serum level of PHD2/HIF-1α and brain tissue damage in rats during acute hypobaric hypoxia exposure.
Xiao-Ya LI ; Chun-Hua WU ; Ying-Jie YAN ; Deng-Hui WANG ; Meng-Jie WANG ; Zhong-Wei HOU
Chinese Acupuncture & Moxibustion 2022;42(11):1278-1284
OBJECTIVE:
To observe the effect of Biantie (bian stone plaste) pretreatment on serum level of prolyl hydroxylase domain 2 (PHD2) and hypoxia-inducible factor-1α (HIF-1α) in rats with acute hypobaric hypoxia induced-brain injury, and to explore the possible mechanism of Biantie on preventing brain injury at high altitude.
METHODS:
Forty-five male SD rats were randomly divided into a blank group, a model group, a Biantie group, a medication group and a Biantie+inhibitor group, 9 rats in each group. The rats in the Biantie group the and the Biantie+inhibitor group were pretreated with Biantie at "Taiyuan" (LU 9), "Neiguan" (PC 6) and "Renying" (ST 9), 2 h each time, once a day; the rats in the medication group were treated with intragastric administration of rhodiola capsule solution (280 mg/kg) for 14 d; the rats in the Biantie+inhibitor group were intraperitoneally injected with the PHD inhibitor dimethyloxalyl glycine (DMOG) at a dose of 40 mg/kg 24 h before the establishment of the model. After the intervention, except for the blank group, the rats in the remaining 4 groups were placed in the oxygen chamber to simulate a high-altitude environment to establish the acute hypobaric hypoxia brain injury model. The arterial blood-gas analysis indexes [blood oxygen saturation (SaO2), lactic acid (Lac), blood sodium (Na+), blood potassium (K+)] and brain water content were detected in each group; the histomorphology of cerebral cortex was observed by HE staining; the serum levels of PHD2 and HIF-1α as well as vascular endothelial growth factor (VEGF) were detected by ELISA; the VEGF protein expression in brain tissue was detected by Western blot; the VEGF mRNA expression in brain tissue was detected by real-time fluorescent quantitative PCR.
RESULTS:
Compared with the blank group, the levels of SaO2 and Na+ in the model group were decreased (P<0.05), while the levels of Lac and K+ as well as the water content of brain tissue were increased (P<0.05). Compared with the model group, the level of SaO2 in the Biantie group and the medication group was increased (P<0.05), while the levels of Lac, K+ and the water content of brain tissue were decreased (P<0.05); the level of Na+ in the Biantie group was increased (P<0.05). Compared with the Biantie group, the level of SaO2 in the Biantie+inhibitor group was decreased (P<0.05), and the level of Lac and the water content of brain tissue were increased (P<0.05). In the model group, the cortical tissue cells were loose and disordered, the cortical blood vessels were dilated, and the cells were obviously swollen; the anoxic injury in the Biantie group and the medication group was lighter, and the anoxic injury in the Biantie+inhibitor group was more obvious than that in the Biantie group. Compared with the blank group, the serum PHD2 content in the model group was decreased and the HIF-1α content was increased (P<0.05), and the content of VEGF in serum and VEGF protein and mRNA expressions in brain were increased (P<0.05). Compared with the model group, the content of PHD2 in serum in the Biantie group and the medication group was increased (P<0.05), and the level of HIF-1α was decreased (P<0.05), and the content of VEGF in serum as well as VEGF protein and mRNA expressions in brain were decreased (P<0.05). Compared with the Biantie group, the serum PHD2 content in the Biantie+inhibitor group was decreased and HIF-1α level were increased (P<0.05), and the content of VEGF in serum as well as VEGF mRNA expression in brain were increased (P<0.05).
CONCLUSION
Biantie at "Taiyuan" (LU 9), "Neiguan" (PC 6) and "Renying" (ST 9) could regulate serum PHD2/HIF-1α to down-regulate VEGF expression, reduce brain edema and enhance anti-hypoxia ability, so as to achieve the purpose of preventing brain injury at high altitude.
Animals
;
Rats
;
Male
;
Prolyl Hydroxylases/metabolism*
;
Hypoxia-Inducible Factor 1, alpha Subunit/metabolism*
;
Vascular Endothelial Growth Factor A/metabolism*
;
Rats, Sprague-Dawley
;
Procollagen-Proline Dioxygenase/metabolism*
;
Brain Injuries
;
Brain/metabolism*
;
RNA, Messenger
;
Water

Result Analysis
Print
Save
E-mail