2.Current Status of Solid Organ Xenotransplantation.
The Journal of the Korean Society for Transplantation 2016;30(2):69-76
Solid organ xenotransplantation using transgenic pig organs is proposed as an alternative method for allo-transplantation. To accomplish this, immunologic and non-immunologic barriers for xenotransplantation should be overcome, and experiments on pigs to non-human primates (NHP) are now ongoing for clinical application. Before the clinical experiment, public consensus about ethical decisions must be considered. The results of NHP experiments on solid organ xenotransplantation are improving, and it is expected that xeno-solid organs can be used as new organs for human patients in the future.
Consensus
;
Humans
;
Methods
;
Primates
;
Swine
;
Transplantation, Heterologous*
3.REPEATOME: A Database for Repeat Element Comparative Analysis in Human and Chimpanzee.
Taeha WOO ; Tae Hui HONG ; Sang Soo KIM ; Won Hyong CHUNG ; Hyo Jin KANG ; Chang Bae KIM ; Jungmin SEO
Genomics & Informatics 2007;5(4):179-187
An increasing number of primate genomes are being sequenced. A direct comparison of repeat elements in human genes and their corresponding chimpanzee orthologs will not only give information on their evolution, but also shed light on the major evolutionary events that shaped our species. We have developed REPEATOME to enable visualization and subsequent comparisons of human and chimpanzee repeat elements. REPEATOME (http://www.repeatome.org/) provides easy access to a complete repeat element map of the human genome, as well as repeat element-associated information. It provides a convenient and effective way to access the repeat elements within or spanning the functional regions in human and chimpanzee genome sequences. REPEATOME includes information to compare repeat elements and gene structures of human genes and their counterparts in chimpanzee. This database can be accessed using comparative search options such as intersection, union, and difference to find lineage-specific or common repeat elements. REPEATOME allows researchers to perform visualization and comparative analysis of repeat elements in human and chimpanzee.
Genome
;
Genome, Human
;
Humans*
;
Pan troglodytes*
;
Primates
4.Genetic Approaches for Neural Circuits Dissection in Non-human Primates.
Neuroscience Bulletin 2023;39(10):1561-1576
Genetic tools, which can be used for the morphology study of specific neurons, pathway-selective connectome mapping, neuronal activity monitoring, and manipulation with a spatiotemporal resolution, have been widely applied to the understanding of complex neural circuit formation, interactions, and functions in rodents. Recently, similar genetic approaches have been tried in non-human primates (NHPs) in neuroscience studies for dissecting the neural circuits involved in sophisticated behaviors and clinical brain disorders, although they are still very preliminary. In this review, we introduce the progress made in the development and application of genetic tools for brain studies on NHPs. We also discuss the advantages and limitations of each approach and provide a perspective for using genetic tools to study the neural circuits of NHPs.
Animals
;
Primates/physiology*
;
Brain/physiology*
;
Connectome
5.PrimateDB: Development of Primate Genome DB and Web Service.
Taeha WOO ; Gwangsik SHIN ; Taewook KANG ; Byoungchul KIM ; Jungmin SEO ; Sang Soo KIM ; Chang Bae KIM
Genomics & Informatics 2005;3(2):73-76
The comparative analysis of the human and primate genomes including the chimpanzee can reveal unique types of information impossible to obtain from comparing the human genome with the genomes of other vertebrates. PrimateDB is an open depository server that provides primate genome information for the comparative genome research. The database also provides an easy access to variable information within/between the primate genomes and supports analyzed information, such as annotation and retroelements and phylogeny. The comparative analyses of more primate genomes are also being included as the long-term objective.
Genome*
;
Genome, Human
;
Humans
;
Pan troglodytes
;
Phylogeny
;
Primates*
;
Retroelements
;
Vertebrates
6.Evolutionary Approaches toward Psychiatry.
Journal of Korean Neuropsychiatric Association 2014;53(6):347-357
Evolutionary anthropology is the multidisciplinary field of social and natural sciences regarding the physiology and behavior of Homo Sapiens, and the relationship between human and other Hominoids like primates or ancient human species. Evolutionary anthropological approach toward psychiatry is a promising way to resolve the inter-disciplinary conflicts between different fields of study of the human mind. Evolutionary psychiatry is the specialized part of applied biologic anthropology and clinical psychiatry dealing with the biological causes of mental disorders, the impacts of cultural change toward the evolution of the human mind by studying the ancestry of mankind. I attempted to overview the history of evolutionary anthropology or neuroanthropology related to brain and mind, and the possibility of evolutionary psychiatry by showing the progress of academic and social issues regarding the ultimate causes of several mental illnesses.
Anthropology
;
Brain
;
Humans
;
Mental Disorders
;
Natural Science Disciplines
;
Physiology
;
Primates
7.Temporal Pole Projections to the Ventral Shell Striatal Subterritory in the Primate.
Korean Journal of Anatomy 2003;36(4):265-270
Paralimbic association area in the temporal pole is situated between sensory association areas and the limbic regions and has direct connections with these areas and the ventral striatum. Corticostriatal connections of paralimbic association area in the temporal pole were studied with particular emphasis on specific projections of the ventral striatum to identify different contributions to the functional outcome of the ventral striatum. Retrograde tracers were injected into the five different regions of the ventral striatum such as the ventromedial caudate nucleus, ventral shell, central shell, dorsal core of the nucleus accumbens (NA), and ventrolateral putamen to identify the labeled cells of origin. Present results indicate that the temporal pole has specifically dense projections to the ventral shell of NA. This differential pattern of corticostriatal connectivity suggests that ventral shell region of ventral striatum is preferentially involved in the convergence of sensory and limbic stimulus to motivational and emotional states.
Basal Ganglia
;
Caudate Nucleus
;
Nucleus Accumbens
;
Primates*
;
Putamen
8.Stimulus and reward information encoded by population neurons in the primate prefrontal cortex and striatum.
Su-Hua CHEN ; Xiao-Chuan PAN ; Masamichi SAKAGAMI
Acta Physiologica Sinica 2020;72(6):765-776
It has been reported that single-unit activity in the prefrontal cortex (PFC) and striatum represented visual stimulus and reward information. But how to encode these pieces of information is quite complex from the view of single-neuron activity. Different neurons represented stimulus or reward information in different task epochs with increasing or decreasing their activities relative to their baseline firing rates. The present paper was aimed to study whether population neurons in the two brain areas could stably encode task-relevant parameters in a whole trial period. We recorded single-unit activities in the lateral PFC (LPFC) and striatum while the monkey was performing a stimulus- reward prediction task, and analyzed the neuronal activities by the method of a multi-variable regression model and the linear support vector machine. The results showed that, although proportions of task-related neurons in the two areas varied largely in the whole trial period, LPFC population neurons encoded reward and stimulus information stably and reliably. Population neurons in the striatum encoded only reward information, not stimulus information. A group of neurons in the two areas represented combined information of stimulus and reward. Further analysis showed that LPFC neurons encoded reward information for a group of relevant stimuli, while striatal neurons encoded reward information for a specific stimulus. These results suggest that both LPFC and striatal population neurons are able to stably represent task-relevant information, but from different aspects of the task. The different strategies to encode information in the LPFC and striatum suggest their different contributions in reward-based decision making.
Animals
;
Corpus Striatum
;
Neurons
;
Prefrontal Cortex
;
Primates
;
Reward
9.Three-axis Modification of Coordinates Enables Accurate Stereotactic Targeting in Non-human Primate Brains of Different Sizes
Hyung Sun KIM ; Goo Hwa KANG ; Hanlim SONG ; Ra Gyung KIM ; Ji Young PARK ; Jeong Ho HWANG ; Hyoung Ihl KIM
Experimental Neurobiology 2019;28(3):425-435
The brain grows with age in non-human primates (NHPs). Therefore, atlas-based stereotactic coordinates cannot be used directly to target subcortical structures if the size of the animal's brain differs from that used in the stereotactic atlas. Furthermore, growth is non-uniform across different cortical regions, making it difficult to simply apply a single brain-expansion ratio. We determined the skull reference lines that best reflect changes in brain size along the X, Y, and Z axes and plotted the changes in reference-line length against the changes in body weight. The skull reference lines had a linear relationship with body weight. However, comparison of skull reference lines with body weight confirmed the non-uniform skull growth during postnatal development, with skull growth more prominent in the X and Y axes than the Z axis. Comparing the differences between the atlas-based lengths and those calculated empirically from plot-based linear fits, we created craniometric indices that can be used to modify stereotactic coordinates along all axes. We verified the accuracy of the corrected stereotactic targeting by infusing dye into internal capsule in euthanized and preserved NHP brains. Our axis-specific, craniometric-index-adjusted stereotactic targeting enabled us to correct for targeting errors arising from differences in brain size. Histological verification showed that the method was accurate to within 1 mm. Craniometric index-adjusted targeting is a simple and relatively accurate method that can be used for NHP stereotactic surgery in the general laboratory, without the need for high-resolution imaging.
Body Weight
;
Brain
;
Internal Capsule
;
Methods
;
Primates
;
Skull
10.Characteristics of Animal Shoulder Models for Rotator Cuff Experiments.
Clinics in Shoulder and Elbow 2015;18(1):52-58
Animal shoulder models are important in the investigation of the natural history of various pathologic conditions and for evaluation of the effectiveness of different treatments and biomaterials. The characteristics of animal shoulder models that may be used for rotator cuff related experiments are different with regard to the anatomy, behavioral pattern, advantages and disadvantages in application to each other. The lower primates and all the non-primate species, except the tree kangaroo, were neither functional overhead nor had a true rotator cuff. Utilizing more advanced primates, or perhaps even the tree kangaroo would be ideal and the most relevant to man as they possess a true rotator cuff. However, ethical concerns, costs, and many limitations in obtaining primates generally preclude the use of these animals for such research. Finally we should consider the differences in comparative anatomy and behavioral pattern of each animal model during performance or interpretation of rotator cuff experiments.
Anatomy, Comparative
;
Animals
;
Biocompatible Materials
;
Macropodidae
;
Models, Animal
;
Natural History
;
Primates
;
Rotator Cuff*
;
Shoulder*