1.Chidamide triggers pyroptosis in T-cell lymphoblastic lymphoma/leukemia via the FOXO1/GSDME axis.
Xinlei LI ; Bangdong LIU ; Dezhi HUANG ; Naya MA ; Jing XIA ; Xianlan ZHAO ; Yishuo DUAN ; Fu LI ; Shijia LIN ; Shuhan TANG ; Qiong LI ; Jun RAO ; Xi ZHANG
Chinese Medical Journal 2025;138(10):1213-1224
BACKGROUND:
T-cell lymphoblastic lymphoma/acute lymphoblastic leukemia (T-LBL/ALL) is an aggressive form of hematological malignancy associated with poor prognosis in adult patients. Histone deacetylases (HDACs) are aberrantly expressed in T-LBL/ALL and are considered potential therapeutic targets. Here, we investigated the antitumor effect of a novel HDAC inhibitor, chidamide, on T-LBL/ALL.
METHODS:
HDAC1, HDAC2 and HDAC3 levels in T-LBL/ALL cell lines and patient samples were compared with those in normal controls. Flow cytometry, transmission electron microscopy, and lactate dehydrogenase release assays were conducted in Jurkat and MOLT-4 cells to assess apoptosis and pyroptosis. A specific forkhead box O1 (FOXO1) inhibitor was used to rescue pyroptosis and upregulated gasdermin E (GSDME) expression caused by chidamide treatment. The role of the FOXO1 transcription factor was evaluated by dual-luciferase reporter and chromatin immunoprecipitation assays. The efficacy of chidamide in vivo was evaluated in a xenograft mouse.
RESULTS:
The expression of HDAC1, HDAC2 and HDAC3 was significantly upregulated in T-LBL/ALL. Cell viability was obviously inhibited after chidamide treatment. Pyroptosis, characterized by cell swelling, pore formation on the plasma membrane and lactate dehydrogenase leakage, was identified as a new mechanism of chidamide treatment. Chidamide triggered pyroptosis through caspase 3 activation and GSDME transcriptional upregulation. Chromatin immunoprecipitation assays confirmed that chidamide led to the increased transcription of GSDME through a more relaxed chromatin structure at the promoter and the upregulation of FOXO1 expression. Moreover, we identified the therapeutic effect of chidamide in vivo .
CONCLUSIONS
This study suggested that chidamide exerts an antitumor effect on T-LBL/ALL and promotes a more inflammatory form of cell death via the FOXO1/GSDME axis, which provides a novel choice of targeted therapy for patients with T-LBL/ALL.
Humans
;
Pyroptosis/drug effects*
;
Forkhead Box Protein O1/genetics*
;
Aminopyridines/pharmacology*
;
Animals
;
Mice
;
Benzamides/pharmacology*
;
Cell Line, Tumor
;
Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy*
;
Phosphate-Binding Proteins/metabolism*
;
Histone Deacetylase Inhibitors/pharmacology*
;
Jurkat Cells
;
Histone Deacetylases/metabolism*
;
Apoptosis/drug effects*
;
Gasdermins
2.Correlation between Expression Levels of Tim-3, C-myc and Proportion of T Lymphocyte Subsets and Prognosis in Patients with Acute Lymphoblastic Leukemia.
Yu-Chai ZHONG ; Ke-Ding HU ; Yi-Rong JIANG ; Xiao-Wen HUANG
Journal of Experimental Hematology 2025;33(5):1299-1304
OBJECTIVE:
To analyze the correlation between the expression levels of Tim-3, C-myc and the proportion of T lymphocyte subsets and prognosis in patients with acute lymphoblastic leukemia (ALL).
METHODS:
The research group selected 60 ALL patients admitted to our hospital from December 2019 to December 2021, while the control group selected 55 healthy volunteers who underwent physical examination in our hospital. The expression levels of Tim-3, C-myc mRNA and the proportion of T lymphocyte subsets in the two groups were detected. The mortality rate of ALL patients was calculated, and the correlation between the expression levels of Tim-3, C-myc, and the proportion of T lymphocyte subsets and pathological features and prognosis was analyzed.
RESULTS:
Compared with the control group, the levels of Tim-3, C-myc and CD8+ in the research group were increased, while the levels of CD3+ , CD4+ and CD4+ /CD8+ were decreased (all P < 0.001). The levels of Tim-3, C-myc mRNA, CD3+ , CD4+ , CD8+ , CD4+ /CD8+ were correlated with risk classification and extramedullary infiltration (all P < 0.05). The survival rate of patients with low expression of Tim-3, C-myc, and CD8+ was higher than that of patients with high expression, while the survival rate of patients with high expression of CD3+ , CD4+ , and CD4+ /CD8+ was higher than that of patients with low expression (all P < 0.05). Univariate analysis showed that the deceased patients had higher proportions of extramedullary infiltration and high-risk classification, as well as higher levels of Tim-3, C-myc, and CD8+ , while lower levels of CD3+ , CD4+ , and CD4+ /CD8+ compared with surviving patients (all P < 0.01). Multivariate logistic regression analysis showed that extramedullary invasion, risk classification, Tim-3, C-myc, CD3+ , CD4+ , CD8+ , CD4+ /CD8+ were the main factors affecting the prognosis of ALL patients (all P < 0.05). ROC curve analysis showed that the combination of Tim-3, C-myc, and T lymphocyte subsets had higher sensitivity and accuracy in predicting prognosis of ALL patients compared with the single diagnosis of Tim-3, C-myc, CD3+ , CD4+ , CD8+ , and CD4+ /CD8+ (P < 0.05).
CONCLUSION
ALL patients show higher levels of Tim-3, C-myc mRNA and CD8+ but lower levels of CD3+ , CD4+ and CD4+/CD8+. Moreover, the expression levels of Tim-3, C-myc, CD3+ , CD4+ , CD8+ and CD4+/CD8+ are correlated with extramedullary invasion, high-risk classification and prognosis.
Humans
;
Hepatitis A Virus Cellular Receptor 2/metabolism*
;
Prognosis
;
Proto-Oncogene Proteins c-myc/metabolism*
;
Precursor Cell Lymphoblastic Leukemia-Lymphoma/diagnosis*
;
T-Lymphocyte Subsets
;
Male
;
Female
;
Adult
;
Middle Aged
;
Adolescent
;
RNA, Messenger
3.Ku80 Inhibition Affects the Chemotherapeutic Sensitivity of T-Acute Lymphoblastic Leukemia Cell Line Jurkat.
Journal of Experimental Hematology 2024;32(6):1689-1695
OBJECTIVE:
To investigate the influence of Ku80 inhibition on the chemotherapeutic sensitivity of the T-acute lymphoblastic leukemia(T-ALL) cell line Jurkat, and to explore the potential mechanism.
METHODS:
The transcription and expression level of Ku80 in 6 hematological malignant cell lines were detected by RT-qPCR and Western blot, respectively. The expression of Ku80 in Jurkat cells was detected by Western blot after transfection with the recombinant shKu80 lentiviral vector. The proliferation capacity of Jurkat cells was explored by CCK-8 after Ku80 inhibition. The colony formation ability, apoptosis, and γH2AX(a protein marker of DNA damage) expression in Jurkat cells were investigated after Ku80 silencing and co-treated with etoposide(VP16) for 4 hours through soft agar assay, flow cytometry and Western blot, respectively.
RESULTS:
The mRNA level and protein expression of Ku80 were both highest in Jurkat among 6 hematological malignant cell lines. Ku80 expression was successfully down regulated in Jurkat cells after relative plasmid transfected. The proliferative ability of cells was significantly decreased after Ku80 inhibition(P < 0.05). The colony formation capacity of Jurkat cells was obviously reduced and the cells apoptosis and γH2AX expression were increased after Ku80 inhibition, with or without VP16 incubation.
CONCLUSION
Targeted silencing of Ku80 could enhance the sensitivity of VP16 in Jurkat cells, which might be associated with the elevated level of DNA damage accumulation.
Humans
;
Ku Autoantigen/metabolism*
;
Jurkat Cells
;
Apoptosis/drug effects*
;
Cell Proliferation
;
Etoposide/pharmacology*
;
DNA Damage
;
Cell Line, Tumor
;
Precursor T-Cell Lymphoblastic Leukemia-Lymphoma
4.Study on the Mechanism of Multi-Drug Resistance of Agaricus Blazei Extract FA-2-b-β Mediated Wnt Signaling Pathway to Reverse Acute T Lymphoblastic Leukemia.
Wen-Wen FENG ; Yu BAI ; Dong-Ping WANG ; Fu-Yan FAN ; Yan-Qing SUN
Journal of Experimental Hematology 2023;31(3):621-627
OBJECTIVE:
To investigate the mechanism of drug reversing resistance of Agaricus blazei extract FA-2-b-β on T cell acute lymphoblastic leukemia (T-ALL) cell lines.
METHODS:
Cell proliferation was detected by CCK-8 assay; the apoptosis, cell cycle mitochondrial membrane potential, and intracellular rhodamine accumulation were detected by flow cytometry, and apoptosis-related gene and protein expression were detected by qPCR and Western blot; the membrane surface protein MDR1 was observed by immunofluorescence microscopy.
RESULTS:
Different concentrations of FA-2-b-β significantly inhibited proliferation and induced apoptosis of CCRF-CEM and CEM/C1 (P<0.05), and CCRF-CEM cell cycle were arrested at S phase, and CEM/C1 cells were arrested at G0/G1 phase. Western blot and qPCR results show that FA-2-b-β inhibited ABCB1、ABCG2、CTNNB、MYC and BCL-2 expression, but upregulated Bax expression. In addition, FA-2-b-β reversed the resistance characteristics of CEM/C1 drug-resistance cells, which decreased mitochondrial membrane potential, and significantly increased the intracellular rhodamine accumulation, and weakening of the expression of the membrane surface protein MDR1. With the Wnt/β-catenin inhibitor (ICG001), the process was further intensified.
CONCLUSION
Agaricus Blazei Extract FA-2-b-β inhibits cell proliferation, promotes apoptosis, regulates the cell cycle, reduces mitochondrial energy supply, and down-regulate MDR1 expression to reverse the resistance of CEM/C1, which all suggest it is through regulating the Wnt signaling pathway in T-ALL.
Humans
;
Precursor T-Cell Lymphoblastic Leukemia-Lymphoma
;
Wnt Signaling Pathway
;
Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism*
;
Apoptosis
;
Drug Resistance, Multiple
;
Membrane Proteins
;
Cell Line, Tumor
;
Cell Proliferation
5.The Effect of SP1 on the Progression of T-cell Acute Lymphoblastic Leukemia.
Shi TANG ; Hao-Biao WANG ; Wei GUO ; Lin ZOU ; Shan LIU
Journal of Experimental Hematology 2023;31(1):57-63
OBJECTIVE:
To study the transcriptional regulation of SP1 on the scaffold protein ARRB1 and its influence on the progression of T-cell acute lymphoblastic leukemia (T-ALL).
METHODS:
pGL3-ARRB1-luc, pCDNA3.1-SP1 and other transcription factor plasmids that might be combined were constructed, and the binding of transcription factors to the promoter of ARRB1 was identified by dual luciferase reporter gene assay. Stable cell lines with over-expressed SP1 (JK-SP1) was constructed by lentiviral transfection, and the expression correlation of SP1 with ARRB1 was demonstrated by RT-PCR and Western blot. Further, the apoptosis, cell cycle and reactive oxygen species (ROS) were detected by flow cytometry. The effect of SP1 on propagation of leukemic cells was observed on NCG leukemic mice.
RESULTS:
The expression of fluorescein were enhanced by co-transfection with pCDNA3.1-SP1 and pGL3-ARRB1-luc plasmids in HEK293T cell line (P<0.001), meanwhile, compared with the control group, the expression of ARRB1 mRNA and protein were increased in JK-SP1 cells (both P<0.01). Further in vitro experiments showed that, compared with the control group, the apoptosis rate was higher (x=22.78%) , the cell cycle was mostly blocked in G1 phase (63.00%), and the content of reactive oxygen species increased in JK-SP1 cells. And in vivo experiments showed that the mice injected with JK-SP1 cells through tail vein had a favorable overall survival time (average 33.8 days), less infiltration in liver and spleen tissue.
CONCLUSION
Transcription factor SP1 promotes the transcription and expression of ARRB1 by binding the the promoter of ARRB1 directly, thus delays the progress of T-ALL in vitro and in vivo. The study improves the pathogenesis of ARRB1 regulating the initiation and development of T-ALL, and provides theoretical basis for the development of new possible targeted drugs.
Humans
;
Animals
;
Mice
;
Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics*
;
HEK293 Cells
;
Reactive Oxygen Species
;
Transcription Factors
;
T-Lymphocytes
;
Cell Line, Tumor
;
Sp1 Transcription Factor/metabolism*
6.Effect of Curcumin on Apoptosis of Acute T-Lymphoblastic Leukemia Cells induced by UMI-77 and Its Related Mechanism.
Zheng XU ; Ling SONG ; Yu-Hui WU ; Bo CAO
Journal of Experimental Hematology 2022;30(3):695-703
:
AbstractObjective: To explore the effect and mechanism of curcumin on human T-cell acute lymphoblastic leukemia (T-ALL) cell apoptosis induced by Mcl-1 small molecule inhibitors UMI-77.
METHODS:
T-ALL cell line Molt-4 was cultured, and the cells were treated with different concentrations of curcumin and Mcl-1 small molecule inhibitor UMI-77 for 24 h. The MTT method was used to detect the cell survival rate after different treatment; According to the results of curcumin and UMI-77, the experimental settings were divided into control group, curcumin group (20 μmol/L curcumin treated cells), UMI-77 group (15 μmol/L Mcl-1 small molecule inhibitor UMI-77 treated cells) and curcumin+ UMI-77 group (20 μmol/L curcumin and 15 μmol/L Mcl-1 small molecule inhibitor UMI-77 treated cells), MTT method was used to detect cell proliferation inhibition rate, Annexin V-FITC/PI double staining method and TUNEL staining were used to detect cell apoptosis, DCFH-DA probe was used to detect cell reactive oxygen species, JC-1 fluorescent probe was used to detect mitochondrial membrane potential, Western blot was used to detect the expression levels of apoptosis-related proteins and Notch1 signaling pathway-related proteins.
RESULTS:
After the treatment of Molt-4 cells with different concentrations of curcumin and Mcl-1 small molecule inhibitor UMI-77, the cell survival rate was decreased (P<0.05); Compared with the control group, the cell proliferation inhibition rate of the curcumin group and the UMI-77 group were increased, the apoptosis rate of cell was increased, the level of ROS was increased, the protein expression of Bax, Caspase-3 and Caspase-9 in the cells were all increased, and the protein expression of Bcl-2 was reduced (P<0.05); Compared with the curcumin group or UMI-77 group, the cell proliferation inhibition rate and apoptosis rate of the curcumin+UMI-77 group were further increased, and the level of ROS was increased. At the same time, the protein expression of Bax, Caspase-3 and Caspase-9 in the cells were all increased, the protein expression of Bcl-2 was reduced (P<0.05); In addition, the mitochondrial membrane potential of the cells after curcumin treatment was decreased, and the proteins expression of Notch1 and HES1 were reduced (P<0.05).
CONCLUSION
Curcumin can enhance the apoptosis of T-ALL cells induced by Mcl-1 small molecule inhibitor UMI-77 by reducing the mitochondrial membrane potential, the mechanism may be related to the inhibition of Notch1 signaling pathway.
Apoptosis
;
Apoptosis Regulatory Proteins
;
Caspase 3/metabolism*
;
Caspase 9/pharmacology*
;
Cell Line, Tumor
;
Curcumin/pharmacology*
;
Humans
;
Myeloid Cell Leukemia Sequence 1 Protein/metabolism*
;
Precursor T-Cell Lymphoblastic Leukemia-Lymphoma
;
Proto-Oncogene Proteins c-bcl-2/metabolism*
;
Reactive Oxygen Species/pharmacology*
;
Sulfonamides
;
Thioglycolates
;
bcl-2-Associated X Protein/pharmacology*
7.Efficacy of Chimeric Antigen Receptor T Cell in the Treatment of Refractory/Recurrent B Acute Lymphocytic Leukemia in Children.
Fan YANG ; Tian-Yi WANG ; Wei-Wei DU ; Hai-Long HE ; Pei-Fang XIAO ; Ye LU ; Shao-Yan HU ; Ben-Shang LI ; Jun LU
Journal of Experimental Hematology 2022;30(3):718-725
OBJECTIVE:
To observe the efficacy of chimeric antigen receptor T cell (CAR-T) in the treatment of children with refractory/recurrent B acute lymphocytic leukemia (B-ALL).
METHODS:
Thirty-two patients with r/r B-ALL were treated by CAR-T, the recurrence and death respectively were the end point events to evaluate the efficacy and safety of CAR-T.
RESULTS:
The median age of the patients was 7.5 (2-17.5) years old; 40 times CAR-T were received in all patients and the median number of CAR-T was 0.9×107/kg; efficacy evaluation showed that 2 cases died before the first evaluation. Thirty patients showed that 3, 6, and 9-moth RFS was (96.3±3.6)%, (81.4±8.6)% and (65.3±12.5)%, respectively, while 3, 6, and 9-month OS was all 100%, and 12, 24-month OS was (94.7±5.1)% and (76±12.8)%. BM blasts≥36% before reinfusion and ferritin peak≥2 500 ng/ml within two weeks of CAR-T cell reinfusion were associated with recurrence. Adverse reactions mainly included cytokine release syndrome (CRS) and CART-cell-related encephalopathy syndrome (CRES), CRS appeared in 26 patients within a week of CAR-T cell reinfusion. CRES reaction was detected in 12 patients. Eighteen patients received intravenous drip of tocilizumab, among them, 12 combined with glucocorticoid. CRS and CRES reactions were relieved within one week after treatment. Hormone dosage was related to the duration of remission in patients, and the cumulative dose of methylprednisolone≥8 mg/kg showed a poor prognosis.
CONCLUSION
CAR-T is a safe and effective treatment for r/r B-ALL, most CRS and CRES reactions are reversible. BM blasts ≥36% before reinfusion and cumulative dose of methylprednisolone ≥8 mg/kg after reinfusion both affect the therapeutic effect. Ferritin≥2 500 ng/ml within two weeks after reinfusion is related to disease recurrence and is an independent prognostic risk factor.
Adolescent
;
Antigens, CD19
;
Child
;
Child, Preschool
;
Chronic Disease
;
Ferritins
;
Humans
;
Immunotherapy, Adoptive
;
Methylprednisolone
;
Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy*
;
Receptors, Antigen, T-Cell
;
Receptors, Chimeric Antigen/metabolism*
;
Recurrence
;
T-Lymphocytes
8.Chidamide inhibits the NOTCH1-MYC signaling axis in T-cell acute lymphoblastic leukemia.
Mengping XI ; Shanshan GUO ; Caicike BAYIN ; Lijun PENG ; Florent CHUFFART ; Ekaterina BOUROVA-FLIN ; Sophie ROUSSEAUX ; Saadi KHOCHBIN ; Jian-Qing MI ; Jin WANG
Frontiers of Medicine 2022;16(3):442-458
T-cell acute lymphoblastic leukemia (T-ALL) is one of the most dangerous hematological malignancies, with high tumor heterogeneity and poor prognosis. More than 60% of T-ALL patients carry NOTCH1 gene mutations, leading to abnormal expression of downstream target genes and aberrant activation of various signaling pathways. We found that chidamide, an HDAC inhibitor, exerts an antitumor effect on T-ALL cell lines and primary cells including an anti-NOTCH1 activity. In particular, chidamide inhibits the NOTCH1-MYC signaling axis by down-regulating the level of the intracellular form of NOTCH1 (NICD1) as well as MYC, partly through their ubiquitination and degradation by the proteasome pathway. We also report here the preliminary results of our clinical trial supporting that a treatment by chidamide reduces minimal residual disease (MRD) in patients and is well tolerated. Our results highlight the effectiveness and safety of chidamide in the treatment of T-ALL patients, including those with NOTCH1 mutations and open the way to a new therapeutic strategy for these patients.
Aminopyridines
;
Benzamides
;
Cell Line, Tumor
;
Humans
;
Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism*
;
Proto-Oncogene Proteins c-myc/metabolism*
;
Receptor, Notch1/metabolism*
;
Signal Transduction
;
T-Lymphocytes/metabolism*
9.Effect of Netrin-1 on VEGFA Expression in T-ALL Cells and Its Related Mechanism.
Yao ZHU ; Hai-Yan LIU ; Yan XIANG ; Hui YANG ; Xin-Yuan YAO ; Xi-Zhou AN ; Kai-Nan ZHANG ; Lan HUANG ; Shao-Yan LIANG ; Jie YU
Journal of Experimental Hematology 2022;30(4):1049-1055
UNLABELLED:
AbstractObjective: To investigate the effect of the axon guidance factor Netrin-1 on the expression of VEGFA in T cell acute lymphoblastic leukemia(T-ALL) and its related mechanism.
METHODS:
ELISA assays were applied to detect the levels of Netrin-1 and VEGFA in the bone marrow (BM) samples from children in the T-ALL and control group. The level of Netrin-1 and VEGFA were compared between control children and patients, and the liner correlation between Netrin-1 and VEGFA was analyzed. The T-ALL cells Jurkat and Molt-4 were culture in vitro, and the cells were treated with different concentration of Netrin-1 (0, 25, 50, 100 ng/ml) for 24 h, quantitative RT-PCR (qRT-PCR) and Western blot were used to detect the VEGFA expression in Jurkat, Molt-4 cells. The expression of Netrin-1 receptors in T-ALL cells was detected by qRT-PCR and the interaction between Netrin-1 and receptor in each cells was detected by co-IP. Furthermore, Western blot was used to detect the phosphorylation level of key prateins of AKT signal transduction pathway including Akt and mTOR in T-ALL cells treated with Netrin-1 (100 ng/ml). The expression of VEGFA and phosphorylation of AKT pathway transducers were detected by Western blot, after T-ALL cells treated with Netrin-1 (100 ng/ml) combined with inhibitors specific to Akt or mTOR.
RESULTS:
The expression level of Netrin-1 and VEGFA in T-ALL patients BM samples were both signi-ficantly higher than that of control group. And the expression level of Netrin-1 was positively correlated with that of VEGFA(r2=0974). With the increase of Netrin-1 concentration, the expression level of VEGFA also increased(P<0.05). Netrin-1 interacted with its receptor, integrin-β4 at the Netrin-1 concentration of 100 ng/ml. Further, the treatment of Netrin-1 could increase the phosphorylation of Akt and mTOR, which were the key transducers of AKT pathway. After treatment of T-ALL cells with Netrin-1 (100 ng/mL) and Akt inhibitor, the expression of VEGFA and phosphorylation of Akt or mTOR decreased. When the cells were treated with Netrin-1(100 ng/ml) and mTOR inbititor, the phosphorylation level of mTOR and the expression of VEGFA decreased, the phosphorylation level of Akt increased.
CONCLUSION
The expression of Netrin-1 and VEGFA in bone marrow of childred with T-ALL were abnormal, and there was a linear relationship between them. Netrin-1 can interact with its receptor, integrin-β4 and activate AKT transduction pathway to elevate the expression of VEGFA in T-ALL cells.
Child
;
Humans
;
Integrins
;
Netrin-1/metabolism*
;
Precursor T-Cell Lymphoblastic Leukemia-Lymphoma
;
Proto-Oncogene Proteins c-akt/metabolism*
;
T-Lymphocytes
;
TOR Serine-Threonine Kinases/metabolism*
;
Vascular Endothelial Growth Factor A

Result Analysis
Print
Save
E-mail