1.Detection of Avian Influenza Virus in Environmental Samples Collected from Live Poultry Markets in China during 2009-2013.
Ye ZHANG ; Xiaodan LI ; Shumei ZOU ; Hong BO ; Libo DONG ; Rongbao GAO ; Dayan WANG ; Yuelong SHU
Chinese Journal of Virology 2015;31(6):615-619
Abstract: To investigate the distribution of avian influenza virus in environmental samples from live poultry markets (LPM) in China, samples were collected and tested by nucleic acid during 2009-2013 season. Each sample was tested by real-time RT PCR using flu A specific primers. If any real-time PCR was positive, the sample was inoculated into specific-pathogen-free (SPF) embryonated chicken eggs for viral isolation. The results indicated that the positive rate of nucleic acid in enviromental samples exhibited seasonality. The positive rate of nucleic acid was significantly higher in Winter and Spring. The positive rate of nucleic acid in LPM located in the south of China was higher than in northern China. Samples of Sewage for cleaning poultry and chopping board showed that higher positive rate of nucleic acid than other samples. The Subtype identification showed that H5 and H9 were main subtypes in the enviromental samples. Viral isolation indicated H5 subtypes was more than H9 subtypes between 2009 and 2013 while H9 subtypes increased in 2013. Our findings suggested the significance of public health based on LPM surveillance and provided the basis of prevention and early warning for avian flu infection human.
Animals
;
China
;
Feces
;
virology
;
Fresh Water
;
virology
;
Influenza A virus
;
classification
;
genetics
;
isolation & purification
;
Influenza in Birds
;
virology
;
Poultry
;
Poultry Diseases
;
virology
;
Public Health
;
Seasons
;
Sewage
;
virology
2.Complete genome phylogenetic analysis of five H9N2 avian influenza viruses isolated from poultry flocks in Qinghai lake region.
Lin-Yu LIU ; Shuang-Ying JIANG ; Li-Jie WANG ; Hu YI ; Sheng-Cang ZHAO ; Zhi-Jian TANG ; Cui-Ling XU ; Jie DONG ; Rong-Bao GAO ; Ye ZHANG ; Shu-Mei ZOU ; Xiao-Dan LI ; Lei YANG ; Jing YANG ; Tao CHEN ; Yue-Long SHU
Chinese Journal of Virology 2014;30(2):109-118
Five H9N2 avian influenza virus strains were isolated from the environmental samples in live poultry market in Qinghai Lake region from July to September, 2012. To evaluate the phylogenetic characteristics of these H9N2 isolates, the eight gene segments were amplified by RT-PCR and sequenced. The phylogenetic and molecular characteristics of the five strains were analyzed. The results showed that the HA genes of five strains shared 93. 2%-99. 1% nucleotide identities with each other, and the NA genes shared 94. 5%-99. 8% nucleotide identities. The HA cleavage site sequence of the A/environment/qinghai/ 017/2012 isolate was PSKSSRGLF, and the HA cleavage site sequences of the other four strains were all PSRSSRGLF. The HA receptor-binding site had the Q226L mutation. The M1 gene segment had the N30D and T215A mutations. The phylogenetic analysis showed that the five strains were similar to the virus A/chicken/Hunan/5260/2005 (H9N2) isolated in Hunan Province, China and were reassortant genotype viruses; the HA, NA, and NS genes belonged to the Y280-like lineage; the MP gene belonged to the G1-like lineage; the NP, PB1, PB2, and PA genes belonged to the F98-like lineage.
Animals
;
China
;
Genome, Viral
;
Genotype
;
Influenza A Virus, H9N2 Subtype
;
classification
;
genetics
;
isolation & purification
;
Influenza in Birds
;
virology
;
Molecular Sequence Data
;
Phylogeny
;
Poultry
;
Poultry Diseases
;
virology
;
Viral Proteins
;
genetics
3.Preliminary study on apoptosis of DEF cells induced by new type gosling viral enteritis virus (NGVEV) infection.
Shun CHEN ; An-Chun CHENG ; Ming-Shu WANG ; Yi ZHOU
Chinese Journal of Virology 2008;24(5):396-400
The characteristics changes of apoptosis of Duck Embryo Fibroblasts (DEF) cells induced by New type gosling viral enteritis virus, NGVEV) were observed by means of HE staining, electron microscopy and Annexin V-FITC/PI fluorescent staining. During 24-48 h post infection (pi), the difference of morphological change between infected DEF cells and the mock infected cells was invisible. At 72 h pi, the nuclear chromatin was getting condensed through HE staining; apoptotic morphological change such as abnormal shape of the nucleus, condensation of the cytoplasm and chromatin were observed under electron microscope; and the early apoptotic cells (Annexin V-FITC positive and PI negative) were detected under fluorescence microscope. At 96-120 h pi, by means of HE staining and electron microscopy, the advanced morphological change of apoptosis such as formation of different kinds of apoptotic bodies, and shrink of the DEF cells and nucleus were detected; under fluorescence microscope the different stages of the apoptotic DEF can be easily distinguished: early apoptotic cells (Annexin V-FITC postive and pi negative), advanced or late apoptotic cells (both Annexin V-FITC and PI positive), necrosis cells or dead cells (Annexin V-FITC negative and PI positive). This investigation shows that NGVEV might induce apoptosis and form characteristic apoptotic morphological changes in the DEF cells. NGVEV inducement of apoptosis may be an important mechanism of efficient dissemination of virus progeny.
Adenoviridae
;
physiology
;
Animals
;
Annexin A5
;
analysis
;
Apoptosis
;
Ducks
;
embryology
;
Enteritis
;
veterinary
;
virology
;
Fibroblasts
;
cytology
;
virology
;
Geese
;
virology
;
Microscopy, Electron, Transmission
;
Poultry Diseases
;
virology
4.Pathogenicity of an FAdV-4 isolate to chickens and its genomic analysis.
Kai-Kun MO ; Chen-Fei LYU ; Shang-Shang CAO ; Xia LI ; Gang XING ; Yan YAN ; Xiao-Juan ZHENG ; Min LIAO ; Ji-Yong ZHOU
Journal of Zhejiang University. Science. B 2019;20(9):740-752
Fowl adenovirus serotype 4 (FAdV-4) strain SD1511 was isolated from chickens with severe inclusion body hepatitis and hydropericardium syndrome in Shandong Province, China. The isolate was cultured in primary chicken embryo kidney cells. A study of pathogenicity indicated that SD1511 readily infected 7-35-d-old chickens by intramuscular injection and intranasal and oral routes, causing 50%-100% mortality. The 35-d-old chickens suffered more severe infection than 7- and 21-d-old chickens with mortality highest in the intramuscular injection group. The serum from surviving chickens showed potent viral neutralizing capability. The complete genome of SD1511 was sequenced and analyzed. The strain was found to belong to the FAdV-4 cluster with more than 99% identity with the virulent FAdV-4 strains isolated in China in recent years except for some distinct variations, including deletions of open reading frame 27 (ORF27), ORF48, and part of ORF19. Our findings suggest that SD1511 might be used as a prototype strain for the study of pathogenesis and vaccine development.
Animals
;
Antibodies, Neutralizing
;
Aviadenovirus/pathogenicity*
;
Cell Line
;
Chick Embryo/virology*
;
Chickens/virology*
;
China
;
Gene Deletion
;
Genetic Variation
;
Genome
;
Genome, Viral
;
Genomics
;
Kidney/virology*
;
Liver/virology*
;
Open Reading Frames
;
Poultry Diseases/virology*
;
Serogroup
;
Viral Load
;
Virulence
;
Virus Diseases/virology*
5.Pathogenicity and antigenicity of a new variant of Korean nephropathogenic infectious bronchitis virus.
Kang Seuk CHOI ; Eun Kyoung LEE ; Woo Jin JEON ; Mi Ja PARK ; Jin Won KIM ; Jun Hun KWON
Journal of Veterinary Science 2009;10(4):357-359
Despite the existence of an active vaccination program, recently emerged strains of nephropathogenic infectious bronchitis virus (IBV) in Korea have caused significant economic losses in the poultry industry. In this study, we assessed the pathogenic and antigenic characteristics of a K-IIb type field strain of IBV that emerged in Korea since 2003, such as Kr/Q43/06. Specific pathogen free 1-week-old chickens exhibited severe respiratory symptoms (dyspnea) and nephropathogenic lesions (swollen kidneys with nephritis and urate deposits) following challenge with the recent IBV field strain. The antigenic relatedness (R value), based on a calculated virus neutralization index, of the K-IIb type field strain and K-IIa type strain KM91 (isolated in 1991) was 30%, which indicated that the recent strain, Kr/Q43/06, is a new variant that is antigenically distinct from strain KM91. This report is the first to document the emergence of a new antigenic variant of nephropathogenic IBV in chicken from Korea.
Animals
;
Antigens, Viral
;
*Chickens
;
Coronavirus Infections/epidemiology/*veterinary/virology
;
Infectious bronchitis virus/classification/*pathogenicity
;
Korea
;
Nephritis/*veterinary/virology
;
Poultry Diseases/*virology
;
Specific Pathogen-Free Organisms
;
Virulence
6.Development of a GeXP assay for simultaneous differentiation of six chicken respiratory viruses.
Si-Si LUO ; Zhi-Xun XIE ; Li-Ji XIE ; Yao-Shan PANG ; Qing FAN ; Xian-Wen DENG ; Jia-Bo LIU ; Zhi-Qin XIE
Chinese Journal of Virology 2013;29(3):250-257
A GeXP based multiplex PCR assay was developed to simultaneously detect six different chicken respiratory viruses including H5, H7, H9 subtypes of avian influenza virus(AIV), new castle disease virus (NDV), infectious bronchitis virus(IBV) and infectious laryngotracheitis virus(ILTV). According to the conserved sequences of genes of each pathogen, seven pairs of specific primers were designed, and the reaction conditions were optimized. The specificity and accuracy of GeXP were examined using samples of single and mixed infections of virus. The sensitivity was evaluated by performing the assay on serial 10-fold dilutions of cloned plasmids. To further evaluate the reliability, thirty-four clinical samples were detected by GeXP. The corresponding specific fragments of genes were amplified. The detection limit of GeXP was 10(2) copies/microL when all of 7 pre-mixed plasmids containing target genes of six chicken respiratory viruses were present. In the detection of thirty-four clinical samples, the results of GeXP were accorded with the viral isolation completely. In conclusion, this GeXP assay is a rapid, specific, sensitive and high-throughput method for the detection of chicken respiratory virus infections. It can be applied in rapid differential diagnosis for clinical samples, and also provide an effective tool to prevent and control chicken respiratory diseases with similar clinical symptoms.
Animals
;
Chickens
;
Influenza A virus
;
classification
;
genetics
;
isolation & purification
;
physiology
;
Influenza in Birds
;
diagnosis
;
virology
;
Multiplex Polymerase Chain Reaction
;
methods
;
Poultry Diseases
;
diagnosis
;
virology
;
Respiratory Tract Infections
;
diagnosis
;
veterinary
;
virology
7.Identification of a new subgroup of avian leukosis virus isolated from Chinese indigenous chicken breeds.
Xin WANG ; Peng ZHAO ; Zhi-Zhong CUI
Chinese Journal of Virology 2012;28(6):609-614
In order to clarify Avian leukosis virus (ALV) characteristics from Chinese native chicken breeds, three ALV JS11C1, JS11C2 and JS11C3 were isolated from Chinese native breed "luhua" by inoculation of DF1 cell culture and detection of p27 antigen. Using PCR amplification of env gene, the amplified gp85 genes were analyzed and compared to all six chicken ALV subgroups reported. The gp85 genes of these three viruses were 1 005bp in length and encoded 335 amino acids, and the gp37 genes were 609bp and encoded 203 amino acids. The homology of gp85 among these three isolated strains was 91.9%-97.0%. Comparing to 18 stains of subgroup A, B, C, D, E published in GenBank, the homology was only in the range of 77.7%-84.6%, significantly lower than the gp85 homology observed within the common chicken subgroups A (88.2%-98.5%), B (91.6%-98.8%), and E (97.9%-99.4%). The gp85 homology compared with subgroup J was only 34.2%-36.5%. These results suggested that three isolated strains from Chinese native breed "luhua" belong to a new subgroup different from all six known subgroups from Chickens, and thus designated as subgroup K.
Animals
;
Avian Leukosis
;
virology
;
Avian Leukosis Virus
;
classification
;
genetics
;
isolation & purification
;
metabolism
;
Breeding
;
Chickens
;
genetics
;
virology
;
Molecular Sequence Data
;
Phylogeny
;
Poultry Diseases
;
virology
;
Viral Envelope Proteins
;
genetics
;
metabolism
8.Cross-species Transmission of Avian Leukosis Virus Subgroup J.
Yanwei SHEN ; Menglian HE ; Ji ZHANG ; Manda ZHAO ; Guihua WANG ; Ziqiang CHENG
Chinese Journal of Virology 2016;32(1):46-55
Avian leukosis virus subgroup J (ALV-J) is an avian retrovirus that can induce myelocytomas. A high-frequency mutation in gene envelope endows ALV-J with the potential for cross-species transmission. We wished to ascertain if the ALV-J can spread across species under selection pressure in susceptible and resistant hosts. First, we inoculated (in turn) two susceptible host birds (specific pathogen-free (SPF) chickens and turkeys). Then, we inoculated three resistant hosts (pheasants, quails and ducks) to detect the viral shedding, pathologic changes, and genetic evolution of different isolates. We found that pheasants and quails were infected under the selective pressure that accumulates stepwise in different hosts, and that ducks were not infected. Infection rates for SPF chickens and turkeys were 100% (16/16), whereas those for pheasants and quails were 37.5% (6/16) and 11.1% (3/27). Infected hosts showed immune tolerance, and inflammation and tissue damage could be seen in the liver, spleen, kidneys and cardiovascular system. Non-synonymous mutation and synonymous ratio (NS/S) analyses revealed the NS/S in hypervariable region (hr) 2 of pheasants and quails was 2.5. That finding suggested that mutation of isolates in pheasants and quails was induced by selective pressure from the resistant host, and that the hr2 region is a critical domain in cross-species transmission of ALV-J. Sequencing showed that ALV-J isolates from turkeys, pheasants and quails had moved away from the original virus, and were closer to the ALV-J prototype strain HPRS-103. However, the HPRS-103 strain cannot infect pheasants and quails, so further studies are needed.
Amino Acid Sequence
;
Animals
;
Avian Leukosis
;
transmission
;
virology
;
Avian Leukosis Virus
;
classification
;
genetics
;
physiology
;
Chickens
;
Ducks
;
virology
;
Galliformes
;
virology
;
Host Specificity
;
Molecular Sequence Data
;
Poultry Diseases
;
transmission
;
virology
;
Quail
;
virology
;
Sequence Alignment
;
Turkeys
;
virology
;
Viral Envelope Proteins
;
chemistry
;
genetics
;
metabolism
9.Viscerotropic velogenic Newcastle disease virus replication in feathers of infected chickens.
Dong Hun LEE ; Jung Hoon KWON ; Jin Yong NOH ; Jae Keun PARK ; Seong Su YUK ; Tseren Ochir ERDENE-OCHIR ; Sang Soep NAHM ; Yong Kuk KWON ; Sang Won LEE ; Chang Seon SONG
Journal of Veterinary Science 2016;17(1):115-117
Newcastle disease viruses (NDVs) cause systemic diseases in chickens with high mortality. However, little is known about persistence of NDVs in contaminated tissues from infected birds. In this study, we examined viral replication in the feather pulp of chickens inoculated with viscerotropic velogenic NDV (vvNDV) genotype VII. Reverse transcription real-time PCR and immunohistochemistry were used to investigate viral persistence in the samples. vvNDV was detected in the oropharynx and cloaca and viral antigens were detected in the feathers, suggesting that feathers act as sources of viral transmission.
Animals
;
Antigens, Viral/analysis
;
Chickens
;
Cloaca/virology
;
Feathers/*virology
;
Microbial Viability
;
Newcastle Disease/transmission/*virology
;
Newcastle disease virus/isolation & purification/*physiology
;
Oropharynx/virology
;
Poultry Diseases/transmission/*virology
;
Virus Replication/*physiology
10.Isolation and phylogenetic analysis of hemagglutinin gene of H9N2 influenza viruses from chickens in South China from 2012 to 2013.
Han Qin SHEN ; Zhuan Qiang YAN ; Fan Gui ZENG ; Chang Tao LIAO ; Qing Feng ZHOU ; Jian Ping QIN ; Qing Mei XIE ; Ying Zuo BI ; Feng CHEN
Journal of Veterinary Science 2015;16(3):317-324
As part of our ongoing influenza surveillance program in South China, 19 field strains of H9N2 subtype avian influenza viruses (AIVs) were isolated from dead or diseased chicken flocks in Guangdong province, South China, between 2012 and 2013. Hemagglutinin (HA) genes of these strains were sequenced and analyzed and phylogenic analysis showed that 12 of the 19 isolates belonged to the lineage h9.4.2.5, while the other seven belonged to h9.4.2.6. Specifically, we found that all of the viruses isolated in 2013 belonged to lineage h9.4.2.5. The lineage h9.4.2.5 viruses contained a PSRSSRdownward arrowGLF motif at HA cleavage site, while the lineage h9.4.2.6 viruses contained a PARSSRdownward arrowGLF at the same position. Most of the isolates in lineage h9.4.2.5 lost one potential glycosylation site at residues 200-202, and had an additional one at residues 295-297 in HA1. Notably, 19 isolates had an amino acid exchange (Q226L) in the receptor binding site, which indicated that the viruses had potential affinity of binding to human like receptor. The present study shows the importance of continuing surveillance of new H9N2 strains to better prepare for the next epidemic or pandemic outbreak of H9N2 AIV infections in chicken flocks.
Animals
;
*Chickens
;
China
;
Hemagglutinin Glycoproteins, Influenza Virus/chemistry/*genetics/metabolism
;
Influenza A Virus, H9N2 Subtype/*genetics/metabolism
;
Influenza in Birds/virology
;
Phylogeny
;
Poultry Diseases/*virology
;
Sequence Analysis, RNA/veterinary