1.Protection of chickens against infectious bronchitis virus with a multivalent DNA vaccine and boosting with an inactivated vaccine.
Fang YAN ; Yujun ZHAO ; Yongting HU ; Jianyang QIU ; Wenxin LEI ; Wenhui JI ; Xuying LI ; Qian WU ; Xiumin SHI ; Zhong LI
Journal of Veterinary Science 2013;14(1):53-60
The protective efficacy of DNA plasmids encoding avian infectious bronchitis virus (IBV) S1, N, or M protein was investigated in chickens. Chickens were inoculated monovalently (with plasmid pVAX1-16S1, pVAX1-16M, or pVAX1-16N alone) or multivalently (combination of the three different plasmids, pVAX1-16S1/M/N). A prime-boost immunization protocol against IBV was developed. Chickens were immunized with the multivalent DNA vaccine twice and then boosted with an inactivated vaccine once. Antibody titers of the chickens immunized with pVAX1-16S1/M/N were much higher than those of the monovalent groups (p < 0.01). A protective rate up to 90% was observed in the pVAX1-16S1/M/N group. The serum antibody titers in the prime-boost birds were significantly higher than those of the multivalent DNA vaccine group (p < 0.01) but not significantly different compared to the inactivated vaccine group at 49 days of age. Additionally, the prime-boost group also showed the highest level of IBV-specific cellular proliferation compared to the monovalent groups (p < 0.01) but no significant difference was found compared to the multivalent DNA vaccine group, and the prime-boost group completely protected from followed viral challenge.
Aging
;
Animals
;
Antibodies, Viral/blood
;
Cell Proliferation
;
Chickens
;
Coronavirus Infections/prevention & control/*veterinary/virology
;
Immunization, Secondary/veterinary
;
Infectious bronchitis virus/*immunology
;
Poultry Diseases/*prevention & control/virology
;
T-Lymphocyte Subsets/cytology/physiology
;
Vaccines, DNA/immunology
;
Vaccines, Inactivated/immunology
;
Viral Vaccines/*immunology
2.The ALV-A/B specific antibodies correlation between ELISA and IFA detection in chicken serum.
Xue LI ; De-Qing LI ; Peng ZHAO ; Zhi-Zhong CUI
Chinese Journal of Virology 2012;28(6):615-620
To study the correlation between ELISA and IFA tests in detection of ALV-A/B antibody in chicken sera, ELSA S/P values and IFA titers for different serum samples were measured and statistically analyzed. The results indicated that there was a strong positive correlation between ELISA S/P values and IFA titers (r = 0.97435, P < 0.001). Because the positive correlation between ELISA and IFA was so strong and antibody positive rates were identical in two tests, it suggested that IFA could be used as a alternative method to replace ELISA kit when only limited numbers of samples to be tested to reduce the cost and increase the sensitivity.
Animals
;
Antibodies, Viral
;
blood
;
immunology
;
Avian Leukosis
;
diagnosis
;
immunology
;
virology
;
Avian Leukosis Virus
;
classification
;
immunology
;
isolation & purification
;
Cell Line
;
Chickens
;
Enzyme-Linked Immunosorbent Assay
;
methods
;
Fluorescent Antibody Technique, Indirect
;
methods
;
Poultry Diseases
;
diagnosis
;
immunology
;
virology
;
Species Specificity
3.Sequencing and Serologic Identification of S1 Genes of Infectious Bronchitis Viruses Isolated during 2012-2013 in Guangxi Province, China.
Lihua ZHANG ; Cuilan WU ; Zhipeng ZHANG ; Yining HE ; Heming LI ; Lili QIN ; Tianchao WEI ; Meilan MO ; Ping WEI
Chinese Journal of Virology 2016;32(1):62-69
We wished to ascertain the prevalence as well as the genetic and antigenic variation of infectious bronchitis viruses (IBVs) circulating in the Guangxi Province of China in recent years. The S1 gene of 15 IBV field isolates during 2012-2013 underwent analyses in terms of the similarity of amino-acid sequences, creation of phylogenetic trees, recombination, and serologic identification. Similarities in amino-acid sequences among the 15 isolates of the S1 gene were 54.3%-99.6%, and 43.3%-99.3% among 15 isolates and reference strains. Compared with the vaccine strain H120, except for GX-YL130025, the other 14 isolates showed a lower similarity of amino-acid sequences of the S1 gene (65.1-81.4%). Phylogenetic analyses of the S1 gene suggested that 15 IBV isolates were classified into eight genotypes, with the predominant genotype being new-type II. Recombination analyses demonstrated that the S1 gene of the GX-NN130048 isolate originated from recombination events between vaccine strain 4/91 and a LX4-like isolate. Serotyping results suggested that seven serotypes prevailed during 2012-2013 in Guangxi Province, and that only one isolate was consistent with the vaccine strain H120 in serotype (which has been used widely in recent years). The serotype of recombinant isolate GX-NN130048 was different from those of its parent strains. These results suggested that not only the genotype, but also the serotype of IBV field isolates in Guangxi Province had distinct variations, and that increasing numbers of genotypes and serotypes are in circulation. We showed that recombination events can lead to the emergence of new serotypes. Our study provides new evidence for understanding of the molecular mechanisms of IBV variations, and the development of new vaccines against IBVs.
Animals
;
Antibodies, Viral
;
blood
;
Chickens
;
China
;
Coronavirus Infections
;
blood
;
veterinary
;
virology
;
Genetic Variation
;
Genotype
;
Infectious bronchitis virus
;
classification
;
genetics
;
immunology
;
isolation & purification
;
Molecular Sequence Data
;
Phylogeny
;
Poultry Diseases
;
blood
;
virology
;
Sequence Homology, Amino Acid
;
Spike Glycoprotein, Coronavirus
;
chemistry
;
genetics
;
immunology
4.Prevalence of anti-HEV among swine, sheep and chickens.
Yong-hong ZHU ; Yan-feng CHEN ; Rong-lan TANG ; Da-hong TU ; You-chun WANG ; Hui ZHUANG
Chinese Journal of Experimental and Clinical Virology 2004;18(2):127-128
BACKGROUNDTo investigate the prevalence of anti-HEV among swine, sheep and chickens.
METHODSTotally 498 sera of swine, sheep and chickens collected from Xingjiang, Guangxi, Guangdong, Beijing and Hebei were detected for the anti-HEV by an enzyme linked immunoassay.
RESULTSThe anti-HEV positive rate of swine was 67.53%(104/154), in pigs between 4-5 months of age the rate was 100.00%(9/9) from Xingjiang. The rate in pigs under 3 months of age from Guangxi was 36.00%(9/25) and in pigs older than six months of age was 71.67% (86/120), respectively. The 108 sera of sheep collected from Xingjiang were all negative. The positive rate of chickens was only 1.27% (3/236). The anti-HEV prevalence rates of chickens from Luoding, Shenzhen, Liuzhou, Beijing and Hebei were 4.00%, 1.49%, 1.49%, 0, 0 respectively.
CONCLUSIONHEV infection does exist among swine and chickens. The anti-HEV prevalence of swine was the highest among domestic animals. The role of swine and chickens in transmission of HEV needs to be further studied.
Animals ; Antibodies, Viral ; Chickens ; China ; epidemiology ; Hepatitis Antibodies ; blood ; Hepatitis E ; epidemiology ; veterinary ; Hepatitis E virus ; immunology ; Poultry Diseases ; epidemiology ; virology ; Prevalence ; Sheep ; Sheep Diseases ; epidemiology ; virology ; Swine ; Swine Diseases ; epidemiology ; virology
5.Development and evaluation of an inactivated bivalent vaccine against duck viral hepatitis.
Fenggui YIN ; Li JING ; Shuang ZHANG ; Meng YU ; Wanlin ZHANG ; Guobing FAN ; Xiukai DONG ; Wenjun LIU
Chinese Journal of Biotechnology 2015;31(11):1579-1588
The rapid mutation and widely spread of duck hepatitis A virus (DHAV) lead to the vast economic loss of the duck industry. To prepare and evaluate bivalent inactivated vaccine laboratory products of DHAV, 6 strains were screened from 201 DHAV-1 strains and 38 DHAV-3 strains by using serotype epidemiological analysis in most of the duck factory. Vaccine candidate strains were selected by ELD50 and LD50 tests in the 6 strains. Continuously passaged, the 5th passaged duck embryos bodies grinding fluid was selected as vaccine virus seeds. The virus seeds were treated with formaldehyde and water in oil in water (W/O/W) emulsions, making into three batches of two bivalent inactivated vaccine laboratory products. The safety test, antibody neutralization test, challenged protection and cross immune protection experiment suggested that the vaccines possessed good safety, and neutralizing antibodies were detected at 7th day and the challenged protection rate reached 90% to 100% at the 14th and 21st day. Moreover, immune duration of ducklings lasted more than five weeks. However, cross-immunity protection experiments with DHAV-SH and DHAV-FS only had 20%-30%. The two bivalent inactivated vaccine laboratory products of duck viral hepatitis were effective and reliable, providing a new method as well as a new product for DHAV prevention and control.
Animals
;
Antibodies, Neutralizing
;
blood
;
Ducks
;
virology
;
Hepatitis Virus, Duck
;
Hepatitis, Viral, Animal
;
prevention & control
;
virology
;
Neutralization Tests
;
Picornaviridae Infections
;
prevention & control
;
veterinary
;
Poultry Diseases
;
prevention & control
;
virology
;
Vaccines, Inactivated
;
immunology
;
Viral Hepatitis Vaccines
;
immunology
6.Development and characterization of a potential diagnostic monoclonal antibody against capsid protein VP1 of the chicken anemia virus.
Yi Yang LIEN ; Chi Hung HUANG ; Fang Chun SUN ; Shyang Chwen SHEU ; Tsung Chi LU ; Meng Shiunn LEE ; Shu Chin HSUEH ; Hsi Jien CHEN ; Meng Shiou LEE
Journal of Veterinary Science 2012;13(1):73-79
Chicken anemia virus (CAV) is an important viral pathogen that causes anemia and severe immunodeficiency syndrome in chickens worldwide. In this study, a potential diagnostic monoclonal antibody against the CAV VP1 protein was developed which can precisely recognize the CAV antigen for diagnostic and virus recovery purposes. The VP1 gene of CAV encoding the N-terminus-deleted VP1 protein, VP1Nd129, was cloned into an Escherichia (E.) coli expression vector. After isopropyl-beta-D-thiogalactopyronoside induction, VP1Nd129 protein was shown to be successfully expressed in the E. coli. By performing an enzyme-linked immunoabsorbent assay using two coating antigens, purified VP1Nd129 and CAV-infected liver tissue lysate, E3 monoclonal antibody (mAb) was found to have higher reactivity against VP1 protein than the other positive clones according to the result of limiting dilution method from 64 clones. Using immunohistochemistry, the presence of the VP1-specific mAb, E3, was confirmed using CAV-infected liver and thymus tissues as positive-infected samples. Additionally, CAV particle purification was also performed using an immunoaffinity column containing E3 mAb. The monoclonal E3 mAb developed in this study will not only be very useful for detecting CAV infection and performing histopathology studies of infected chickens, but may also be used to purify CAV particles in the future.
Animals
;
Antibodies, Monoclonal/biosynthesis/genetics/*immunology
;
Antigens, Viral/analysis
;
Capsid Proteins/genetics/*immunology
;
Chicken anemia virus/genetics/*immunology
;
*Chickens
;
Circoviridae Infections/blood/immunology/*veterinary/virology
;
Escherichia coli/genetics
;
Immunohistochemistry/veterinary
;
Liver/virology
;
Mice
;
Mice, Inbred BALB C
;
Microscopy, Fluorescence/veterinary
;
Poultry Diseases/blood/immunology/*virology
;
Specific Pathogen-Free Organisms
;
Thymus Gland/virology
7.Evaluation of the protection conferred by several avian infectious bronchitis attenuated vaccines against the field strain CK/CH/LDL/97 I in China.
Xiao-Nan ZHAGN ; Yu WANG ; Cheng-Ren LI ; Qiao-Ran LIU ; Zong Xi HAN ; Yu-Hao SHAO ; Sheng-Wang LIU ; Xian-Gang KONG
Chinese Journal of Virology 2008;24(2):111-116
The entire S1 protein gene of five infectious bronchitis (IB) vaccine strains (JAAS, IBN, Jilin, J9, H120) used in China were compared with that of the IB field isolate CK/CH/LDL/97 I present in China. The nucleotide and deduced amino acid similarities between the five IB vaccine strains and the field strain, CK/CH/LDL/97 I, were not more than 76.4% and 78.7%, respectively. Phylogenetic analysis based on the S1 gene showed that the vaccine strains and the field strain belonged to different clusters and had larger evolutionary distances, indicating that they were of different genotypes. The five vaccine strains were used for protection test against challenge of the field isolate CK/CH/LDL/97 I. The chickens inoculated with five vaccine strains showed morbidity as high as 30%-100% after challenged with the CK/CH/ LDL/97 I strain. The organ samples at 5 days post challenge showed that the viral detection rates were 50%-90% and 10%-30% for trachea and kidney, respectively. The live attenuated vaccines only provided partial protection to the vaccinated chickens against heterologous IBV infection, CK/CH/LDL/97 I.
Animals
;
Antibodies, Viral
;
blood
;
Chickens
;
virology
;
Coronavirus Infections
;
prevention & control
;
veterinary
;
Infectious bronchitis virus
;
classification
;
genetics
;
immunology
;
isolation & purification
;
Membrane Glycoproteins
;
genetics
;
Phylogeny
;
Poultry Diseases
;
prevention & control
;
Spike Glycoprotein, Coronavirus
;
Vaccines, Attenuated
;
immunology
;
Viral Envelope Proteins
;
genetics
;
Viral Vaccines
;
immunology
8.Passive immunization using purified IgYs against infectious bursal disease of chickens in Pakistan.
Muhammad Wasif MALIK ; Najma AYUB ; Irfan Zia QURESHI
Journal of Veterinary Science 2006;7(1):43-46
Infectious bursal disease (IBD) is an acute and highly contagious disease of young chickens caused by Birnavirus. Mortality of infected birds can be best prevented if injected with antibodies. The present study was an attempt to raise specific hyper-immune polyclonal antibodies against IBD virus in Pakistan. Commercial layers divided into four groups were injected with IBD vaccine subcutaneously according to four different treatment regimens. Eggs were collected daily and antibodies were purified from yolk with dextran sulphate. Titers of antibodies in serum and yolk were evaluated with enzyme linked immunosorbant assay and agar gel precipitation test. Antibody titers were significantly higher in yolk than serum. Eggs collected at 28 days post-vaccination had maximum antibody titers. Of treatment regimens, T3 was found to be most effective for hyperimmunization. Lyophilized antibodies stored at 4oC did not lose their activity till the end of experiment. IBD virus infected birds were injected with purified antibodies which induced 92% recovery as compared to control birds. The study implicates that the purified antibodies may be useful as a therapeutic agent to cure IBD infected birds.
Animals
;
Antibodies, Viral/blood
;
Birnaviridae Infections/immunology/*therapy/*veterinary/virology
;
*Chickens
;
Egg Yolk/immunology/virology
;
Enzyme-Linked Immunosorbent Assay/veterinary
;
Female
;
Immunization/methods/*veterinary
;
Immunoglobulins/*immunology
;
Immunotherapy/methods/veterinary
;
Infectious bursal disease virus/*immunology
;
Poultry Diseases/immunology/*therapy/*virology
;
Precipitin Tests/veterinary
;
Viral Vaccines/*immunology/therapeutic use
9.Efficacy of VP2 protein expressed in E. coli for protection against highly virulent infectious bursal disease virus.
Abdul Rahman OMAR ; Chong Lee KIM ; Mohd Hair BEJO ; Aini IDERIS
Journal of Veterinary Science 2006;7(3):241-247
The ability of a heat-inactivated whole virus from a highly virulent infectious bursal disease virus (hvIBDV) and VP2 protein from hvIBDV expressed in E. coli provided protection against a hvIBDV challenge in specificpathogen- free (SPF) chickens. Six out of seven chickens that were injected three times with crude VP2 protein developed significant antibody titer against IBDV. However, only four out of the seven chickens survived the hvIBDV challenge. Despite showing low antibody titer profiles, all chickens immunized with the heat-inactivated whole virus also survived the challenged with hvIBDV. However, all of these chickens had bursal atrophy and mild to moderate depletion of lymphocytes. Thus, antibodies raised against IBDV VP2 protein expressed in E. coli and denatured IBDV proteins induced some degree of protection against mortality but not against bursal damage following challenge with hvIBDV.
Animals
;
Antibodies, Viral/blood
;
Birnaviridae Infections/immunology/prevention & control/*veterinary/virology
;
Chickens
;
Enzyme-Linked Immunosorbent Assay/veterinary
;
Escherichia coli/genetics
;
Immunization/standards/*veterinary
;
Infectious bursal disease virus/genetics/*immunology/pathogenicity
;
Poultry Diseases/*immunology/prevention&control/virology
;
Recombinant Proteins/genetics/*immunology
;
Specific Pathogen-Free Organisms
;
Vaccines, Attenuated/immunology/pharmacology
;
Vaccines, Synthetic/immunology/pharmacology
;
Viral Structural Proteins/biosynthesis/genetics/*immunology
;
Viral Vaccines/*immunology/pharmacology
10.The critical time of avian leukosis virus subgroup J-mediated immunosuppression during early stage infection in specific pathogen-free chickens.
Feng WANG ; Xiaowei WANG ; Hongbo CHEN ; Jianzhu LIU ; Ziqiang CHENG
Journal of Veterinary Science 2011;12(3):235-241
The critical time of avian leukosis virus subgroup J (ALV-J)-mediated immunosuppression was determined by body weight, relative immune organ weight, histopathology, and presence of group specific antigen and antibodies in specific pathogen-free (SPF) chickens. CD4+ and CD8+ cell activity in the spleen, total and differential leukocyte counts in blood, and viral RNA levels in spleen were measured. Significant growth suppression was observed in the two ALV-J-infected groups. A strong immune response by infected groups was present in spleen at 2-weeks-of-age, but after 4-weeks-of-age, the response decreased quickly. The thymus and bursa showed persistent immunosuppression until 4-weeks-of-age. Proliferation of fibroblasts and dendritic cells were observed in immune organs at 4- and 5-weeks-of-age. However, the granulocyte cell number was markedly lower in the infected groups than in the control group. In group 1 (day 1 infection) CD4+ cells increased during the second week but significantly decreased during the fourth week, while group 2 (day 7 infection) showed the opposite effect. Viral RNA increased significantly by the fourth week. These data identify 3~4 weeks post-infection as the key time at which the ALV-J virus exerts its immunosuppressive effects on the host.
Animals
;
Antibodies, Viral/blood
;
Antigens, CD4/blood
;
Antigens, CD8/blood
;
Avian Leukosis/*immunology/transmission/virology
;
Avian leukosis virus/classification/*immunology
;
Body Weight
;
*Chickens
;
China
;
Enzyme-Linked Immunosorbent Assay/veterinary
;
Immune Tolerance
;
Leukocyte Count/veterinary
;
Poultry Diseases/*immunology/transmission/virology
;
RNA, Viral/genetics
;
Real-Time Polymerase Chain Reaction/veterinary
;
Reverse Transcriptase Polymerase Chain Reaction/veterinary
;
Specific Pathogen-Free Organisms
;
Spleen/immunology