1.Some observations on the adaptation of Eimeria tenella (local isolates) sporozoites on chicken embryos through chorioallantoic membrane.
M Abdul HAFEEZ ; Masood AKHTAR ; M Mazhar AYAZ
Journal of Veterinary Science 2006;7(1):59-61
Eimeria (E.) tenella (local isolate) sporozoites were adapted on the chorioallantoic membrane (CAM) of 10-12 days chicken embryos and completed its life cycle in 6~7 days at 39 degrees C and 70 per cent humidity. Only 23 embryos (4.6%) were found dead from 1~4 day post inoculation of sporozoites with mild lesions on CAM with no gametocytes but few sporozoites in chorioallantoic fluid (CAF). On 5~7 day post inoculation, 432 embryos (86.4%) were found dead with severe haemorrhages on CAM and CAF contained uncountable number of gametocytes. After seven days post inoculation, 45 embryos (9%) were found to be alive. Some oocysts were also detected in the CAF on 6~7 days post inoculation. In the histological sections of the CAM, there were abundant small dark colored rounded bodies of gametes; distributed extensively in tissues of CAM on 5~7 days post inoculation of sporozoites. In some cases, cluster of small mature and immature relatively large bodies were seen in increasing numbers on 5~6 days post inoculation.
Animals
;
Chick Embryo
;
*Chickens
;
Chorioallantoic Membrane/*parasitology
;
Coccidiosis/parasitology/*veterinary
;
Eimeria tenella/*growth&development
;
Histocytochemistry
;
Poultry Diseases/*parasitology
2.Construction of subtractive cDNA libraries of the sporogony stage of Eimeria tenella by suppression subtractive hybridization.
Hong-Yu HAN ; Jiao-Jiao LIN ; Qi-Ping ZHAO ; Hui DONG ; Lian-Lian JIANG ; Xin WANG ; Jing-Fang HAN ; Bing HUANG
Chinese Journal of Biotechnology 2007;23(6):1005-1010
In order to clone and identify differentially expressed genes in the sporogony stage of Eimeria tenella, the cDNAs from unsporulated oocysts and sporulated oocysts of E. tenella were used as driver, respectively, the cDNAs from sporozoites of E. tenella was used tester, Two subtractive cDNA libraries of sporozoites were constructed by using the technique of suppression subtractive hybridization (SSH). the cDNAs from unsporulated oocysts was used driver, the cDNAs from sporulated ooceysts was used tester, one subtractive cDNA library of sporulated oocysts was constructed. PCR amplification revealed that the two subtractive cDNA libraries of sporozoites and one subtractive cDNA library of sporulated oocysts contained approximated 96%, 96% and 98% recombinant clones, respectively. Fifty positive clones were sequenced and analyzed in GenBank with Blast search from three subtractive cDNA libraries, respectively, thirteen unique sequences were found from the subtractive cDNA library of sporulated oocysts, eight ESTs shared significant identity with previously described. A total of forty unique sequences were obtained from the two subtractive cDNA libraries, nine ESTs shared significant identity with previously described, the other sequences represent novel genes of E. tenella with no significant homology to the proteins in Genbank. These results have provided the foundation for cloning new genes of E. tenella and further studying new approaches to control coccidiosis.
Animals
;
Chickens
;
parasitology
;
Coccidiosis
;
parasitology
;
veterinary
;
DNA, Protozoan
;
genetics
;
Eimeria tenella
;
genetics
;
physiology
;
Gene Expression Regulation
;
Gene Library
;
Nucleic Acid Hybridization
;
methods
;
Oocytes
;
metabolism
;
Poultry Diseases
;
parasitology
;
Spores
3.Cochlosoma Infection in a Turkey in Iran.
Mohammad Javad GHARAGOZLOU ; Omid DEZFOULIAN
The Korean Journal of Parasitology 2009;47(4):393-395
Cochlosoma sp. infection was identified in a single case among 60 stunted diarrheic native turkey poults, Meleagris galopavo. A large number of the flagellated parasites was found free or within the intervillous spaces of the jejunum, ileum and cecum. Moderate enteritis was associated with the parasites. In TEM studies of the parasagittal sections of the parasite, a prominent ventral sucker like disc and flagella emerging from an opening on the ventrodorsal surface of the pyriform uninuclear parasite were found. The morphological characteristics of this protozoan match with those described for Cochlosoma anatis. The parasite could be considered as an intestinal pathogenic protozoan causing stunting and diarrhea in turkeys in Iran.
Animals
;
Cecum/parasitology/pathology
;
Enteritis/diagnosis/parasitology/veterinary
;
Ileum/parasitology/pathology
;
Iran
;
Jejunum/parasitology/pathology
;
Organelles/ultrastructure
;
Poultry Diseases/*diagnosis/*parasitology
;
Protozoan Infections, Animal/*diagnosis/*parasitology
;
Trichomonadida/cytology/*isolation & purification
;
Turkeys
4.Pathogenicity of Five Strains of Toxoplasma gondii from Different Animals to Chickens.
Shuai WANG ; Guang Wei ZHAO ; Wang WANG ; Zhen Chao ZHANG ; Bo SHEN ; I A HASSAN ; Qing XIE ; Ruo Feng YAN ; Xiao Kai SONG ; Li Xin XU ; Xiang Rui LI
The Korean Journal of Parasitology 2015;53(2):155-162
Toxoplasma gondii is a protozoan parasite with a broad range of intermediate hosts. Chickens as important food-producing animals can also serve as intermediate hosts. To date, experimental studies on the pathogenicity of T. gondii in broiler chickens were rarely reported. The objective of the present study was to compare the pathogenicity of 5 different T. gondii strains (RH, CN, JS, CAT2, and CAT3) from various host species origin in 10-day-old chickens. Each group of chickens was infected intraperitoneally with 5 x 10(8), 1 x 10(8), 1 x 10(7), and 1 x 10(6) tachyzoites of the 5 strains, respectively. The negative control group was mockly inoculated with PBS alone. After infection, clinical symptoms and rectal temperatures of all the chickens were checked daily. Dead chickens during acute phage of the infection were checked for T. gondii tachyzoites by microscope, while living cases were checked for T. gondii infection at day 53 post-inoculation (PI) by PCR method. Histopathological sections were used to observe the pathological changes in the dead chickens and the living animals at day 53 PI. No significant differences were found in survival periods, histopathological findings, and clinical symptoms among the chickens infected with the RH, CN, CAT2, and CAT3 strains. Histopathological findings and clinical symptoms of the JS (chicken origin) group were similar to the others. However, average survival times of infected chickens of the JS group inoculated with 5 x 10(8) and 1 x 10(8) tachyzoites were 30.0 and 188.4 hr, respectively, significantly shorter than those of the other 4 mammalian isolates. Chickens exposed to 10(8) of T. gondii tachyzoites and higher showed acute signs of toxoplasmosis, and the lesions were relatively more severe than those exposed to lower doses. The results indicated that the pathogenicity of JS strain was comparatively stronger to the chicken, and the pathogenicity was dose-dependent.
Animals
;
Antibodies, Protozoan/blood
;
Cat Diseases/parasitology
;
Cats
;
Chickens
;
Poultry Diseases/blood/mortality/*parasitology/pathology
;
Swine
;
Swine Diseases/parasitology
;
Toxoplasma/genetics/growth & development/*pathogenicity/physiology
;
Toxoplasmosis, Animal/blood/mortality/*parasitology/pathology
;
Virulence
5.Viability of preserved Cryptosporidium baileyi oocysts.
Chan Gu SURL ; Se Min KIM ; Hyeon Cheol KIM
The Korean Journal of Parasitology 2003;41(4):197-201
The present study was undertaken to determine the viability and infectivity of oocysts of Cryptosporidium baileyi that had been stored from 1 to 40 months at 4 degrees C preserved in 2.5% potassium dichromate solution. Oocysts of C. baileyi were purified from the feces of experimentally infected chickens using discontinuous sucrose gradients. Subsequently, the purified oocysts were suspended in 2.5% potassium dichromate solution at a concentration of 1 x 10 (7) organism/ml, and their viabilities were assessed by nucleic acid staining, histologic examination, and infectivity to 2-day-old chickens. All chickens inoculated with oocysts that had been stored for 1-18 months developed patent infections, while chickens infected with older oocysts remained uninfected. Between 5.8% and 82.2% of the oocysts, stored at 4 degrees C in 2.5% potassium dichromate solution, were found to be viable, as determined by nucleic acid staining. Parasite colonization in the bursa of Fabricius was detected in the microvillus border of bursal epithelium. The finding that C. baileyi oocysts remain infective to chickens for at least 18 months offers important time-saving advantages to investigators who frequently require large numbers of oocysts.
Animals
;
Bursa of Fabricius/parasitology
;
Chickens/*parasitology
;
Coloring Agents
;
Cryptosporidiosis/parasitology/pathology/*veterinary
;
Cryptosporidium/drug effects/*growth & development/pathogenicity
;
Feces/parasitology
;
Oocysts/drug effects/*growth & development/pathogenicity
;
*Organic Chemicals
;
*Potassium Dichromate/pharmacology
;
Poultry Diseases/parasitology/pathology
;
Preservation, Biological/*methods
;
Staining and Labeling
6.Longevity of Toxocara cati Larvae and Pathology in Tissues of Experimentally Infected Chickens.
Ahmad ORYAN ; Seyyed Mahmoud SADJJADI ; Shahrzad AZIZI
The Korean Journal of Parasitology 2010;48(1):79-80
This study was conducted to determine the distribution patterns and duration of stay of Toxocara cati larvae in organs of chickens and to investigate chronic phase and potential zoonotic risk of toxocariasis in chickens. Chickens were orally infected with 1,000 embryonated T. cati eggs and necropsied 240 days post-infection. Organs of the chickens were examined at gross and microscopic levels; tissues were digested to recover larvae. Peribronchiolitis with infiltration of lymphocytes, and hyperplasia of bronchiolar associated lymphatic tissues (BALT) and goblet cells, were evident in the lungs of infected chickens. There were mild hemorrhages and infiltration of lymphocytes and a few eosinophils in the meninges. Larvae were recovered from 30% of the exposed chickens. Larvae recovery indicated that T. cati larvae stay alive for at least 240 days in the chicken brain. Therefore, chickens may potentially act as a paratenic host in nature and transfer T. cati larvae to other hosts.
Animals
;
Brain/pathology
;
Chickens
;
Larva/physiology
;
*Longevity
;
Lung/pathology
;
Poultry Diseases/*parasitology/*pathology
;
Toxascariasis/pathology/*veterinary
;
Toxocara/*pathogenicity/*physiology
7.Application of biotechnological tools for coccidia vaccine development.
Wongi MIN ; Rami A DALLOUL ; Hyun S LILLEHOJ
Journal of Veterinary Science 2004;5(4):279-288
Coccidiosis is a ubiquitous intestinal protozoan infection of poultry seriously impairing the growth and feed utilization of infected animals. Conventional disease control strategies have relied on prophylactic medication. Due to the continual emergence of drug resistant parasites in the field and increasing incidence of broiler condemnations due to coccidia, novel approaches are urgently needed to reduce economic losses. Understanding the basic biology of host-parasite interactions and protective intestinal immune mechanisms, as well as characterization of host and parasite genes and proteins involved in eliciting protective host responses are crucial for the development of new control strategy. This review will highlight recent developments in coccidiosis research with special emphasis on the utilization of cutting edge techniques in molecular/cell biology, immunology, and functional genomics in coccidia vaccine development. The information will enhance our understanding of host-parasite biology, mucosal immunology, and host and parasite genomics in the development of a practical and effective control strategy against Eimeria and design of nutritional interventions to maximize growth under the stress caused by vaccination or infection. Furthermore, successful identification of quantitative economic traits associated with disease resistance to coccidiosis will provide poultry breeders with a novel selection strategy for development of genetically stable, coccidiosis-resistant chickens, thereby increasing the production efficiency.
Animals
;
Biotechnology/methods
;
Chickens
;
Coccidiosis/prevention&control/*veterinary
;
Eimeria/*immunology
;
Poultry Diseases/parasitology/*prevention&control
;
*Protozoan Vaccines
8.Developmental and Phylogenetic Characteristics of Stellantchasmus falcatus (Trematoda: Heterophyidae) from Thailand.
Pralongyut SRIPALWIT ; Chalobol WONGSAWAD ; Thapana CHONTANANARTH ; Somboon ANUNTALABHOCHAI ; Pheravut WONGSAWAD ; Jong Yil CHAI
The Korean Journal of Parasitology 2015;53(2):201-207
This study aimed to investigate the infection status, worm development, and phylogenetic characteristics of the intestinal trematode, Stellantchasmus falcatus. The metacercariae of S. falcatus were detected only in the half-beak (Dermogenus pusillus) out of the 4 fish species examined. Their prevalence was 90.0%, and the intensity of infection was 919 metacercariae on average. Worms were recovered from 33 (97.1%) of 34 chicks that were experimentally infected with 200 S. falcatus metacercariae each, and the average recovery rate was 43.0%. The body size and inner organs of S. falcatus quickly increased in the experimental chicks over days 1-2 post-infection (PI). In addition, ITS2 sequence data of this parasite were analyzed to examine the phylogenetic relationships with other trematodes using the UPGMA method. The results indicated that the ITS2 sequence data recorded from trematodes in the family Heterophyidae appeared to be monophyletic. This study concluded that D. pusillus serves as a compatible second intermediate host of S. falcatus in Thailand and that S. falcatus can develop rapidly in the experimental chicks. Data collected from this study can help to close the gap in knowledge regarding the epidemiology, biology, and phylogenetic characteristics of S. falcatus in Thailand.
Animals
;
Chickens
;
Fish Diseases/*parasitology
;
Fishes
;
Heterophyidae/*classification/genetics/growth & development/*isolation & purification
;
Metacercariae/classification/genetics/*growth & development/isolation & purification
;
*Phylogeny
;
Poultry Diseases/*parasitology
;
Thailand
;
Trematode Infections/parasitology/*veterinary
9.Effect of Diclazuril on the Bursa of Fabricius Morphology and SIgA Expression in Chickens Infected with Eimeria tenella.
Bian Hua ZHOU ; Li Li LIU ; Jeffrey LIU ; Fu Wei YUAN ; Er Jie TIAN ; Hong Wei WANG
The Korean Journal of Parasitology 2015;53(6):675-682
The effects of diclazuril on the bursa of Fabricius (BF) structure and secretory IgA (SIgA) expression in chickens infected with Eimeria tenella were examined. The morphology of the BF was observed by hematoxylin and eosin staining, while ultrastructural changes were monitored by transmission electron microscopy. E. tenella infection caused the BF cell volumes to decrease, irregularly arranged, as well as, enlargement of the intercellular space. Diclazuril treatment alleviated the physical signs of damages associated with E. tenella infection. The SIgA expression in BF was analyzed by immunohistochemistry technique. The SIgA expression increased significantly by 350.4% (P<0.01) after E. tenella infection compared to the normal control group. With the treatment of diclazuril, the SIgA was relatively fewer in the cortex, and the expression level was significantly decreased by 46.7% (P<0.01) compared with the infected and untreated group. In conclusion, E. tenella infection in chickens induced obvious harmful changes in BF morphological structure and stimulated the expression of SIgA in the BF. Diclazuril treatment effectively alleviated the morphological changes. This result demonstrates a method to develop an immunological strategy in coccidiosis control.
Animals
;
Bursa of Fabricius/anatomy & histology/*parasitology
;
Chickens
;
Coccidiosis/drug therapy/metabolism/parasitology/*veterinary
;
Coccidiostats/administration & dosage/*adverse effects
;
Eimeria tenella/*physiology
;
Female
;
Immunoglobulin A, Secretory/*genetics/metabolism
;
Male
;
Nitriles/administration & dosage/*adverse effects
;
Poultry Diseases/*drug therapy/genetics/metabolism/parasitology
;
Triazines/administration & dosage/*adverse effects