1.Characterization of Lentogenic Newcastle Disease Virus Isolated in Jeju, Korea during 2007~2008 Surveillance.
Eun Kyoung LEE ; Woo Jin JEON ; Jin Won KIM ; Mi Ja PARK ; Sung Hwan MOON ; Sang Hun LEE ; Jun Hun KWON ; Kang Seuk CHOI
Journal of Bacteriology and Virology 2009;39(4):383-393
To expand the epidemiological understanding of Newcastle disease in Jeju Province, Korea, active surveillance was extensively performed through a virological examination for poultry farms and wild birds in Jeju Province during 2007~2008. Samples (swabs or fresh feces) were collected from a total of 6,485 birds including 6,405 domestic birds (chickens, ducks, pheasants, geese, quails, turkeys, and ostriches) and 80 wild birds. A total of 24 hemagglutinating agents were isolated from domestic birds on fourteen farms including five Korean native chicken, one layer chicken, two broiler chicken, four duck and two pheasant farms. The hemagglutinating agents were all identified as lentogenic NDV based on the reverse transcriptase polymerase chain reaction, sequence analysis of amino acids on the F cleavage site and mean death time in chicken embryos. The F gene-based phylogenetic analysis revealed that the NDV isolates were classified into genotypes 1 or 2 of class II. These lentogenic viruses were closely related to NDV vaccine strains used in Jeju Province. Active surveillance conducted for Newcastle disease indicates no scientific evidence of virulent NDV infection in chickens in Jeju Province, Korea since 2005.
Amino Acids
;
Animals
;
Birds
;
Chickens
;
Ducks
;
Embryonic Structures
;
Geese
;
Genotype
;
Korea
;
Newcastle Disease
;
Newcastle disease virus
;
Poultry
;
Quail
;
Reverse Transcriptase Polymerase Chain Reaction
;
Sequence Analysis
;
Turkeys
2.Surveillance of wild birds for avian influenza virus in Korea.
Dong Hun LEE ; Chang Seon SONG
Korean Journal of Veterinary Research 2013;53(4):193-197
Avian influenza viruses (AIV) have been isolated from a wide range of domestic and wild birds. Wild birds, predominantly ducks, geese and gulls form the reservoir of AIV in nature. The viruses in wild bird populations are a potential source of widespread infections in poultry. Active surveillance for AIV infection provides information regarding AIV distribution, and global AIV surveillance can play a key role in the early recognition of highly pathogenic avian influenza (HPAI). Since 2003 in Korea, there have been four H5N1 HPAI outbreaks caused by clade 2.5, 2.2 and 2.3.2. Therefore, improvement of AIV surveillance strategy is required to detect HPAI viruses effectively. This article deals with the major events establishing the role of wild birds in the natural history of influenza in Korea. We highlighted the need for continuous surveillance in wild birds and characterization of these viruses to understand AIV epidemiology and host ecology in Korea.
Animals
;
Birds*
;
Charadriiformes
;
Disease Outbreaks
;
Ducks
;
Ecology
;
Epidemiology
;
Geese
;
Influenza in Birds*
;
Influenza, Human
;
Korea*
;
Natural History
;
Poultry
;
Viruses*
3.A review of H7 subtype avian influenza virus.
Wen-Fei ZHU ; Rong-Bao GAO ; Da-Yan WANG ; Lei YANG ; Yun ZHU ; Yue-Long SHU
Chinese Journal of Virology 2013;29(3):245-249
Since 2002, H7 subtype avian influenza viruses (AIVs) have caused more than 100 human infection cases in the Netherlands, Italy, Canada, the United States, and the United Kingdom, with clinical illness ranging from conjunctivitis to mild upper respiratory illness to pneumonia. On March 31st, three fatal cases caused by infection of a novel reassortant H7N9 subtype were reported in Shanghai City and Anhui Province in China. With the ability of H7 subtype to cause severe human disease and the increasing isolation of subtype H7 AIVs, we highlighted the need for continuous surveillance in both humans and animals and characterization of these viruses for the development of vaccines and anti-viral drugs.
Animals
;
Chickens
;
Ducks
;
Humans
;
Influenza A virus
;
genetics
;
isolation & purification
;
pathogenicity
;
physiology
;
Influenza Vaccines
;
genetics
;
immunology
;
Influenza in Birds
;
immunology
;
prevention & control
;
virology
;
Influenza, Human
;
immunology
;
prevention & control
;
virology
;
Poultry Diseases
;
immunology
;
prevention & control
;
virology
;
Turkeys
4.Cross-species Transmission of Avian Leukosis Virus Subgroup J.
Yanwei SHEN ; Menglian HE ; Ji ZHANG ; Manda ZHAO ; Guihua WANG ; Ziqiang CHENG
Chinese Journal of Virology 2016;32(1):46-55
Avian leukosis virus subgroup J (ALV-J) is an avian retrovirus that can induce myelocytomas. A high-frequency mutation in gene envelope endows ALV-J with the potential for cross-species transmission. We wished to ascertain if the ALV-J can spread across species under selection pressure in susceptible and resistant hosts. First, we inoculated (in turn) two susceptible host birds (specific pathogen-free (SPF) chickens and turkeys). Then, we inoculated three resistant hosts (pheasants, quails and ducks) to detect the viral shedding, pathologic changes, and genetic evolution of different isolates. We found that pheasants and quails were infected under the selective pressure that accumulates stepwise in different hosts, and that ducks were not infected. Infection rates for SPF chickens and turkeys were 100% (16/16), whereas those for pheasants and quails were 37.5% (6/16) and 11.1% (3/27). Infected hosts showed immune tolerance, and inflammation and tissue damage could be seen in the liver, spleen, kidneys and cardiovascular system. Non-synonymous mutation and synonymous ratio (NS/S) analyses revealed the NS/S in hypervariable region (hr) 2 of pheasants and quails was 2.5. That finding suggested that mutation of isolates in pheasants and quails was induced by selective pressure from the resistant host, and that the hr2 region is a critical domain in cross-species transmission of ALV-J. Sequencing showed that ALV-J isolates from turkeys, pheasants and quails had moved away from the original virus, and were closer to the ALV-J prototype strain HPRS-103. However, the HPRS-103 strain cannot infect pheasants and quails, so further studies are needed.
Amino Acid Sequence
;
Animals
;
Avian Leukosis
;
transmission
;
virology
;
Avian Leukosis Virus
;
classification
;
genetics
;
physiology
;
Chickens
;
Ducks
;
virology
;
Galliformes
;
virology
;
Host Specificity
;
Molecular Sequence Data
;
Poultry Diseases
;
transmission
;
virology
;
Quail
;
virology
;
Sequence Alignment
;
Turkeys
;
virology
;
Viral Envelope Proteins
;
chemistry
;
genetics
;
metabolism
5.First isolation of Salmonella I 4,5,12:i:- from domestic animals in Korea.
Deog Yong LEE ; Min Su KANG ; Yong Kuk KWON ; Byung Ki AN ; Young Jo KIM ; Eun Jeong HEO ; Jin San MOON ; Esther LEE ; Hyemin PARK
Korean Journal of Veterinary Research 2012;52(4):285-288
Salmonella I 4,[5],12:i:- was a monophasic variant of Salmonella (S.) Typhimurium and notorious for re-emerging candidate which would replace S. Typhimurium DT104 for antibiotic resistance. Recently, isolation rate was increased on human and industrial animals but there was no case in domestic animals but human in Korea. This was first isolation case from domestic animals in Korea. The five isolates from feces of duck (n = 3), chicken (n = 1), and wild bird (n = 1) showed antibiotic resistance against cephems and aminoglycosides. These means that the spread of emerging bacterial pathogens to domestic animals and the need of systemic management for Salmonella I 4,[5],12:i:-.
Aminoglycosides
;
Animals
;
Animals, Domestic
;
Birds
;
Chickens
;
Drug Resistance, Microbial
;
Ducks
;
Feces
;
Humans
;
Korea
;
Poultry
;
Salmonella
6.Preliminary study on apoptosis of DEF cells induced by new type gosling viral enteritis virus (NGVEV) infection.
Shun CHEN ; An-Chun CHENG ; Ming-Shu WANG ; Yi ZHOU
Chinese Journal of Virology 2008;24(5):396-400
The characteristics changes of apoptosis of Duck Embryo Fibroblasts (DEF) cells induced by New type gosling viral enteritis virus, NGVEV) were observed by means of HE staining, electron microscopy and Annexin V-FITC/PI fluorescent staining. During 24-48 h post infection (pi), the difference of morphological change between infected DEF cells and the mock infected cells was invisible. At 72 h pi, the nuclear chromatin was getting condensed through HE staining; apoptotic morphological change such as abnormal shape of the nucleus, condensation of the cytoplasm and chromatin were observed under electron microscope; and the early apoptotic cells (Annexin V-FITC positive and PI negative) were detected under fluorescence microscope. At 96-120 h pi, by means of HE staining and electron microscopy, the advanced morphological change of apoptosis such as formation of different kinds of apoptotic bodies, and shrink of the DEF cells and nucleus were detected; under fluorescence microscope the different stages of the apoptotic DEF can be easily distinguished: early apoptotic cells (Annexin V-FITC postive and pi negative), advanced or late apoptotic cells (both Annexin V-FITC and PI positive), necrosis cells or dead cells (Annexin V-FITC negative and PI positive). This investigation shows that NGVEV might induce apoptosis and form characteristic apoptotic morphological changes in the DEF cells. NGVEV inducement of apoptosis may be an important mechanism of efficient dissemination of virus progeny.
Adenoviridae
;
physiology
;
Animals
;
Annexin A5
;
analysis
;
Apoptosis
;
Ducks
;
embryology
;
Enteritis
;
veterinary
;
virology
;
Fibroblasts
;
cytology
;
virology
;
Geese
;
virology
;
Microscopy, Electron, Transmission
;
Poultry Diseases
;
virology
7.Localization of S-100 proteins in the testis and epididymis of poultry and rabbits.
Ahmed ABD-ELMAKSOUD ; Mahmoud Badran SHOEIB ; Hany E S MAREI
Anatomy & Cell Biology 2014;47(3):180-187
The present investigation was conducted to demonstrate S-100 protein in the testis and epididymis of adult chickens, Sudani ducks, pigeons, and rabbits. This study may represent the first indication for the presence of S-100 in the male reproductive organs of these species and might therefore serve as a milestone for further reports. In the testis of chickens, pigeons and rabbits, intense S-100 was seen in Sertoli cells. S-100 was also seen in the endothelial lining of blood vessels in rabbit testis. On the contrary, no S-100 reaction was detected in the Sertoli cells of Sudani ducks. In epididymis, the localization of S-100 had varied according to species studied; it was seen in the basal cells (BC) of epididymal duct in duck, non-ciliated cells of the distal efferent ductules in pigeons and ciliated cells of the efferent ductules and BC of rabbit epididymis. Conversely, S-100 specific staining was not detected in the epithelial lining of the rooster and pigeon epididymal duct as well as the principal cells of the rabbit epididymis. In conclusion, the distribution of the S-100 proteins in the testis and epididymis might point out to its roles in the male reproduction.
Adult
;
Blood Vessels
;
Chickens
;
Columbidae
;
Ducks
;
Epididymis*
;
Humans
;
Male
;
Poultry*
;
Rabbits*
;
Reproduction
;
S100 Proteins*
;
Sertoli Cells
;
Testis*
8.An Outbreak of Histomoniasis in Backyard Sanhuang Chickens
Dandan LIU ; Lingming KONG ; Jianping TAO ; Jinjun XU
The Korean Journal of Parasitology 2018;56(6):597-602
Histomonas meleagridis is a facultative anaerobic parasite, which can cause a common poultry disease known as histomoniasis. The species and age of the birds impacts on the susceptibility, with turkey being the most susceptible species. Chickens are less susceptible to H. meleagridis than turkeys and usually serve as reservoir hosts. Here, the diagnosis of an outbreak of histomoniasis in backyard Sanhuang chickens is described. The primary diagnosis was made based on clinical symptoms, general changes at necropsy, histopathology, and the isolation and cultivation of parasites. The pathogen was further confirmed by cloning, PCR identification, and animal inoculation tests. A strain of H. meleagridis, named HM-JSYZ-C, with a higher pathogenicity level in chickens was obtained. The study lays a foundation for further investigations into H. meleagridis and histomoniasis in chickens.
Animals
;
Birds
;
Chickens
;
Clone Cells
;
Cloning, Organism
;
Diagnosis
;
Parasites
;
Polymerase Chain Reaction
;
Poultry Diseases
;
Protozoan Infections
;
Turkey
;
Turkeys
;
Virulence
9.Visual detection of H1 subtype and identification of N1, N2 subtype of avian influenza virus by reverse transcription loop-mediated isothermal amplification assay.
Yi PENG ; Zhi-Xun XIE ; Jie GUO ; Chen-Yu ZHOU ; Jia-Bo LIU ; Yao-Shan PANG ; Xian-Wen DENG ; Zhi-Qin XIE ; Li-Ji XIE ; Qing FAN ; Si-Si LUO
Chinese Journal of Virology 2013;29(2):154-161
In order to visually detect H1, N1 and N2 subtype of avian influenza virus (AIV), three reverse transcription loop-mediated isothermal amplification (RT-LAMP) assays were developed. According to the sequences of AIV gene available in GenBank, three degenerate primer sets specific to HA gene of H1 subtype AIV, NA gene of N1 and N2 subtype AIV were designed, and the reaction conditions were optimized. The results showed that all the assays had no cross-reaction with other subtype AIV and other avian respiratory pathogens, and the detection limit was higher than that of conventional RT-PCR. These assays were performed in water bath within 50 minutes. Without opening tube, the amplification result could be directly determined by inspecting the color change of reaction system as long as these assays were fin-ished. Fourteen specimens of H1N1 subtype and eight specimens of H1N2 subtype of AIV were identified from the 120 clinical samples by RT-LAMP assays developed, which was consistent with that of virus isolation. These results suggested that the three newly developed RT-LAMEP assays were simple, specific and sensitive and had potential for visual detection of H1, N1 and N2 subtype of AIV in field.
Animals
;
Chickens
;
DNA Primers
;
genetics
;
Ducks
;
Influenza A Virus, H1N1 Subtype
;
classification
;
genetics
;
isolation & purification
;
Influenza A Virus, H1N2 Subtype
;
classification
;
genetics
;
isolation & purification
;
Influenza A virus
;
classification
;
genetics
;
isolation & purification
;
Influenza in Birds
;
diagnosis
;
virology
;
Nucleic Acid Amplification Techniques
;
methods
;
Poultry Diseases
;
diagnosis
;
virology
;
Reverse Transcription
;
Turkeys
10.Identification, sequence analysis, and infectivity of H9N2 avian influenza viruses isolated from geese
Rui ZHU ; Xueqin YANG ; Jianjun ZHANG ; Danwen XU ; Jiawen FAN ; Huoying SHI ; Shifeng WANG ; Xiufan LIU
Journal of Veterinary Science 2018;19(3):406-415
The subtype H9N2 avian influenza virus greatly threatens the Chinese poultry industry, even with annual vaccination. Waterfowl can be asymptomatically infected with the H9N2 virus. In this study, three H9N2 virus strains, designated A/Goose/Jiangsu/YZ527/2011 (H9N2, Gs/JS/YZ527/11), A/Goose/Jiangsu/SQ119/2012 (H9N2, Gs/JS/SQ119/12), and A/Goose/Jiangsu/JD564/2012 (H9N2, Gs/JS/JD564/12), were isolated from domestic geese. Molecular characterization of the three isolates showed that the Gs/JS/YZ527/11 virus is a double-reassortant virus, combining genes of A/Quail/Hong Kong/G1/97 (H9N2, G1/97)-like and A/Chicken/Shanghai/F/98 (H9N2, F/98)-like; the Gs/JS/SQ119/12 virus is a triple-reassortant virus combining genes of G1/97-like, F/98-like, and A/Duck/Shantou/163/2004 (H9N2, ST/163/04)-like. The sequences of Gs/JS/JD564/12 share high homology with those of the F/98 virus, except for the neuraminidase gene, whereas the internal genes of Gs/JS/YZ527/11 and Gs/JS/SQ119/12 are closely related to those of the H7N9 viruses. An infectivity analysis of the three isolates showed that Gs/JS/SQ119/12 and Gs/JS/YZ527/11 replicated well, with seroconversion, in geese and chickens, the Gs/JS/JD564/12 did not infect well in geese or chickens, and the F/98 virus only infected chickens, with seroconversion. Emergence of these new reassortant H9N2 avian influenza viruses indicates that these viruses can infect both chicken and goose and can produce different types of lesions in each species.
Animals
;
Asian Continental Ancestry Group
;
Chickens
;
Geese
;
Humans
;
Influenza A Virus, H7N9 Subtype
;
Influenza A Virus, H9N2 Subtype
;
Influenza in Birds
;
Neuraminidase
;
Population Characteristics
;
Poultry
;
Sequence Analysis
;
Seroconversion
;
Vaccination