1.Activation of renal outer medullary potassium channel in the renal distal convoluted tubule by high potassium diet.
Xue LI ; Peng-Hui LI ; Yu XIAO ; Kun ZHAO ; Hong-Ye ZHAO ; Chang-Zhu LU ; Xiao-Juan QI ; Rui-Min GU
Acta Physiologica Sinica 2023;75(2):188-196
Renal outer medullary potassium (ROMK) channel is an important K+ excretion channel in the body, and K+ secreted by the ROMK channels is most or all source of urinary potassium. Previous studies focused on the ROMK channels of thick ascending limb (TAL) and collecting duct (CD), while there were few studies on the involvement of ROMK channels of the late distal convoluted tubule (DCT2) in K+ excretion. The purpose of the present study was mainly to record the ROMK channels current in renal DCT2 and observe the effect of high potassium diet on the ROMK channels by using single channel and whole-cell patch-clamp techniques. The results showed that a small conductance channel current with a conductance of 39 pS could be recorded in the apical membrane of renal DCT2, and it could be blocked by Tertiapin-Q (TPNQ), a ROMK channel inhibitor. The high potassium diet significantly increased the probability of ROMK channel current occurrence in the apical membrane of renal DCT2, and enhanced the activity of ROMK channel, compared to normal potassium diet (P < 0.01). Western blot results also demonstrated that the high potassium diet significantly up-regulated the protein expression levels of ROMK channels and epithelial sodium channel (ENaC), and down-regulated the protein expression level of Na+-Cl- cotransporter (NCC). Moreover, the high potassium diet significantly increased urinary potassium excretion. These results suggest that the high potassium diet may activate the ROMK channels in the apical membrane of renal DCT2 and increase the urinary potassium excretion by up-regulating the expression of renal ROMK channels.
Potassium Channels, Inwardly Rectifying/metabolism*
;
Kidney Tubules, Distal/metabolism*
;
Potassium/metabolism*
;
Epithelial Sodium Channels/metabolism*
;
Diet
2.Actions of Syn-1A on blocking the activation of K(ATP) channel induced by acidic pH.
Jun-Li MA ; Guo-Qing ZHUANG ; Yan-Xia LUO ; Fen LIU ; Yan HE
Chinese Journal of Applied Physiology 2008;24(2):141-144
AIMTo investigate the action and mechanism of Syn-1A in reversing the activation of K(ATP) channel induced by weak acidic pH.
METHODSThe patches excised from Kir6.2/SUR2A expressing HEK-293 cells were used to establish inside-out configuration. To examine the actions of weak acidic pH in activation of the channel and the reverse action of Syn-1A on it, the inside-out patches were continuously perfused with the solution of pH from 7.4, 7.0, 6.8, 6.5 to 6.0 with or without Syn-1A. In vitro binding was employed to study the influence of different pH to the binding of Syn-1A to SUR2A subunit.
RESULTSSyn-1A blocked pH 6.5, 6.8 and 7.0 induced activation of the channel, and Syn-1A binding to SUR2A were increased by reducing pH from 7.4 to 6.0.
CONCLUSIONSyn-1A would assert some inhibition of the KATP channels, which might temper the fluctuation of acidic pH-induced K(ATP) channel opening that could induce fatal re-entrant arrhythmias.
HEK293 Cells ; Humans ; Hydrogen-Ion Concentration ; KATP Channels ; metabolism ; Patch-Clamp Techniques ; Potassium Channels ; metabolism ; Potassium Channels, Inwardly Rectifying ; metabolism ; Syntaxin 1 ; pharmacology
3.Expression of GIRK4 gene in kidney tissues of obese rat.
Yong-an KANG ; Yan-rong HU ; Li GAO ; Hai YANG ; Nan-fang LI
Acta Academiae Medicinae Sinicae 2013;35(1):36-39
OBJECTIVETo investigate the expression of GIRK4 gene in the kidney tissues of obese rats.
METHODSObese rat models were established using diet-induced method. The GIRK4 protein expression in kidney tissues was determined in 20 obese rats and 10 normal rats using Western blot analysis.
RESULTSThe relative expression level of GIRK4 protein in the kidney tissues of obese rat (1.75±0.42) was significantly lower than that in normal rats (3.37±0.68, P<0.05).
CONCLUSIONGIRK4 has a low protein expression in the kidney tissues of obese rat.
Animals ; Female ; Gene Expression ; Kidney ; metabolism ; Male ; Obesity ; genetics ; metabolism ; Potassium Channels, Inwardly Rectifying ; genetics ; metabolism ; Rats
4.Primary cultured neonate rat sinus node cells: morphology and expression of kir2.1 protein.
Yi-ping WEI ; Jin-guo ZHU ; Hui-zhong ZHANG ; Rui-wen XIE ; Ping HUA ; Li-hua XIONG
Journal of Southern Medical University 2007;27(11):1701-1705
OBJECTIVETo investigate the expression of kir2.1 protein in primary cultured sinus node cells and establish a reliable technique to locate, culture and characterize neonatal rat sinus node cells.
METHODSIn paraffin sections, the location and morphology of the neonatal rat sinus node cells were observed by HE staining, silver nitrate staining, myelin staining and phosphotungstic acid-hematoxylin (PTAH) staining. Primary cell culture from the neonatal rat sinus node was conducted to observe the spontaneous contraction frequency, cell morphology and kir2.1 protein expression.
RESULTSCombination of the 3 staining methods allowed accurate localization of the sino-atrial nodal (SAN) tissue, and among the cultured cells in the SAN, at least 3 distinct types of cells with spontaneous contraction were observed. The majority of the contracting cells were spindle cells and their construction and impulse frequency indicated their identity as pacemaker cells, while the triangular and irregular cells resembled the atrial muscle cells. A lower expression level of kir2.1 protein was detected in SAN cells than in the atrial and ventricular myocytes of the neonatal rats.
CONCLUSIONCombination of silver nitrate staining, myelin staining and PTAH staining identifies the exact location of the sinus node tissue, and cultured sinus node cells have lower expression of kir2.1 protein than the atrial and ventricular myocytes of neonatal rats.
Animals ; Cell Culture Techniques ; methods ; Cells, Cultured ; Potassium Channels, Inwardly Rectifying ; metabolism ; Rats ; Rats, Sprague-Dawley ; Sinoatrial Node ; cytology ; metabolism
5.The function and regulation of basolateral Kir4.1 and Kir4.1/Kir5.1 in renal tubules.
Yu XIAO ; Xin-Xin MENG ; Hao ZHANG ; Xi-Wen GUO ; Rui-Min GU
Acta Physiologica Sinica 2018;70(6):600-606
Basolateral inwardly-rectifying K channels (Kir) play an important role in the control of resting membrane potential and transepithelial voltage, thereby modulating water and electrolyte transport in the distal part of nephron. Kir4.1 and Kir4.1/Kir5.1 heterotetramer are abundantly expressed in the basolateral membrane of late thick ascending limb (TAL), distal convoluted tubule (DCT), connecting tubule (CNT) and cortical collecting duct (CCD). Loss-of-function mutations in KCNJ10 cause EAST/SeSAME syndrome in humans associated with epilepsy, ataxia, sensorineural deafness and water-electrolyte metabolism imbalance, which is characterized by salt wasting, hypomagnesaemia, hypokalaemia and metabolic alkalosis. In contrast, mice lacking Kir5.1 have severe renal phenotype apart from hypokalaemia such as high chlorine metabolic acidosis and hypercalcinuria. The genetic knockout or functional inhibition of Kir4.1 suppresses Na-Cl cotransporter (NCC) expression and activity in the DCT. However, the downregulation of Kir4.1 increases epithelial Na channel (ENaC) expression in the collecting duct. Recently, factors regulating expression and activity of Kir4.1 and Kir4.1/Kir5.1 were identified, such as cell acidification, dopamine, insulin and insulin-like growth factor-1. The involved mechanisms include PKC, PI3K, Src family protein tyrosine kinases and WNK-SPAK signal transduction pathways. Here we review the progress of renal tubule basolateral Kir, and mainly discuss the function and regulation of Kir4.1 and Kir4.1/Kir5.1.
Animals
;
Cell Membrane
;
Humans
;
Kidney Tubules
;
metabolism
;
Kidney Tubules, Distal
;
Membrane Potentials
;
Mice
;
Potassium Channels, Inwardly Rectifying
;
metabolism
6.Relationship between the G protein gated inward rectifier potassium channel 4 gene polymorphism and dyslipidemia of Uyghur residents.
Dan SHAO ; Nan-fang LI ; Yan-rong HU ; De-lian ZHANG
Acta Academiae Medicinae Sinicae 2013;35(6):611-617
OBJECTIVETo investigate the relationship between the G protein-gated inward rectifier K+ channel subunit 4 (GIRK4) gene polymorphism and the dyslipidemia among Uyghur residents in Xinjiang.
METHODSThe polymorphisms of rs2604204, rs4937391, rs6590357, and rs11221497 among the Uyghur residents were genotyped using Taqman polymerase chain reaction (PCR). Lipid levels were measured by conventional methods and were analyzed.
RESULTSIn the less-than-50-years population, the genotype distributions of the rs6590357 was statistically significant different in subjects with or without abnormal triglycerides (P=0.005). Aslo, the the genotype distributions of the rs11221497 also significantly differed in subjects with normal compared or abnormal TG (P=0.011). Logistic regression analysis suggested that rs6590357 still had positive association with TG abnormalities in subjects under 50 years (P=0.014). rs11221497 also had positive association with TC abnormalities. The TG levels of CT+TT genotypes were significantly higher than the CC group (P=0.006). Haplotype analysis found that the differences of H3 haplotype frequencies between the TG abnormal and normal groups were statistically significant (P=0.007).
CONCLUSIONThe polymorphisms of rs11221497 and rs6590357 of GIRK4 gene may play a role in the development of dyslipidemia in Uygur population.
China ; epidemiology ; Dyslipidemias ; epidemiology ; metabolism ; Genotype ; Humans ; Polymerase Chain Reaction ; Polymorphism, Single Nucleotide ; Potassium Channels, Inwardly Rectifying ; genetics ; Triglycerides
7.Human inward rectifying potassium current in myocytes isolated from patients with rheumatic atrial fibrillation.
Biao ZHANG ; Lin TONG ; Xiao-rong ZENG ; Yan YANG ; Zhi-fei LIU
Chinese Journal of Cardiology 2006;34(5):433-436
OBJECTIVETo compare the changes of inward rectifying K(+) (Kir) current (I(K1)) density in atrial myocytes of patients with rheumatic atrial fibrillation (RAF) less or longer than 6 months.
METHODI(K1) density was measured with whole-cell patch clamp technique in single myocyte isolated by an enzymatic dissociation method from right atrial appendages in patients with RAF less than 6 months (n = 18) and longer than 6 months (n = 18), RAF patients with normal sinus rhythm (NSR, n = 18) served as control.
RESULTSThe average resting membrane potentials were similar between various groups. I(K1) density in single myocyte at -50 to -100 mV of patients with RAF longer than 6 months was significantly increased compared to that in patients with RAF less than 6 months and NSR patients. I(K1) density in single myocyte at hyperpolarized potential level (-100 mV) was also significantly increased in patients with RAF longer than 6 months (8.94 +/- 0.15) than that in patients with RAF less than 6 months (4.35 +/- 0.49) and NSR patients compared to that in NSR (4.05 +/- 0.96, P < 0.05 vs RAF longer than 6 months).
CONCLUSIONThe data suggest I(K1) current increase might contribute to the electrical remodeling in RAF patients.
Adult ; Atrial Fibrillation ; metabolism ; physiopathology ; Female ; Humans ; Male ; Middle Aged ; Myocytes, Cardiac ; metabolism ; Patch-Clamp Techniques ; Potassium ; metabolism ; Potassium Channels, Inwardly Rectifying ; metabolism
8.Diclofenac inhibits Kv1.3 and Kir2.1 expressions in human macrophages and affects the membrane potential and foam cell formation.
Xinjun LEI ; Wei ZHANG ; Xianfeng LIN ; Dongqi WANG ; Zuyi YUAN
Journal of Southern Medical University 2012;32(8):1067-1073
OBJECTIVETo investigate the effect of diclofenac on the expression of Kv1.3 and Kir2.1 channels in human macrophages and the membrane potential and foaming process of the macrophages.
METHODSThe effect of diclofenac on the expression of Kv1.3 and Kir2.1 channels in cultured human monocyte-derived macrophages was investigated using real-time RT-PCR and Western blotting, and its effect on the membrane potential was analyzed with optical mapping of the membrane potential with voltage-sensitive dyes. The ratio of cholesterol ester (CE) in the macrophages following intake of oxidized low-density lipoprotein (OxLDL) was analyzed by an enzymatic fluorometric method.
RESULTSThe expression of Kv1.3 and Kir2.1 channels in the macrophages were down-regulated by diclofenac (1.5 µmol/L and 15 µmol/L). Compared with those in the control group, Kv1.3 mRNA expression was reduced by over 80% and 90% (P<0.05), and Kir2.1 mRNA by over 20% and 30% (P>0.05), respectively; both their protein expression was reduced by over 10% and 60% with a dose- dependent effect (P<0.05). Diclofenac at the two doses dose-dependently reduced the surface fluorescence intensity of the macrophage, and the membrane potential was decreased by 28% and 54%, respectively (P<0.05). Incubation of the macrophages with 30 mg/L OxLDL for 60 h caused an obvious enlargement of the cell volume and deposition of numerous lipid granules in cytoplasm, resulting also in a CE/TC ratio over 50% (P<0.05). Diclofenac at 1.5 and 15 µmol/L both significantly decreased the CE/TC ratio to (23.624∓3.34)% and (13.601∓2.916)% (P<0.05), respectively, but this effect did not show a dose-response relationship (P>0.05).
CONCLUSIONDiclofenac can significant down-regulate the expression of Kv1.3 and Kir2.1 channels in human macrophages, lower their membrane potential and inhibit the process of foam cell formation.
Cells, Cultured ; Diclofenac ; pharmacology ; Foam Cells ; cytology ; drug effects ; Humans ; Kv1.3 Potassium Channel ; metabolism ; Macrophages ; drug effects ; metabolism ; physiology ; Membrane Potentials ; drug effects ; Potassium Channels, Inwardly Rectifying ; metabolism
9.EAST/SeSAME syndrome and functional expression of inward rectifier potassium channel Kir4.1 in the inner ear.
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2015;29(14):1318-1322
Inwardly rectifying potassium (Kir) channels exhibit an asymmetrical conductance at hyperpolarization (high conductance) compared to depolarization (low conductance). The KCNJ10 gene which encodes an inwardly rectifying K+ channel Kir4.1 subunit plays an essential role in the inner ear and hearing. Mutations or deficiency of KCNJ10 can cause hearing loss with epilepsy, ataxia, sensorineural deafness, and renal tubulopathy (EAST) or SeSAME (seizures, sensorineural deafness, ataxia, mental retardation, and electrolyte imbalance) syndromes. In this review, we mainly focus on the expression and function of Kir4.1 channels in the inner ear and mutation-induced EAST/SeSAME syndromes to provide insight for understanding the pathogenesis of deafness induced by KCNJ10 deficiency.
Deafness
;
genetics
;
metabolism
;
Ear, Inner
;
metabolism
;
Hearing Loss, Sensorineural
;
genetics
;
metabolism
;
Humans
;
Intellectual Disability
;
genetics
;
metabolism
;
Mutation
;
Potassium Channels, Inwardly Rectifying
;
genetics
;
metabolism
;
Seizures
;
genetics
;
metabolism
10.Human inward rectifying potassium current and Kir2.1 mRNA expression in myocytes isolated from patients with chronic atrial fibrillation.
Yu ZHANG ; Xiao-rong ZENG ; Yan YANG ; Biao ZHANG ; Zhi-fei LIU ; Miao-ling LI ; Wen ZHOU ; Jie PEI
Chinese Journal of Cardiology 2006;34(1):33-37
OBJECTIVETo compare the changes of both inward rectifying K(+) (Kir) current(I(k1)) density and mRNA expression level of Kir2.1, a major subfamily of Kir in chronic human atrial fibrillation (CAF) with those in normal sinus rhythm (NSR).
METHODSI(k1) density was measured with whole-cell patch clamp technique in single myocyte isolated by an enzymatic dissociation method from right atrial appendages in patients with CAF (n = 8) and those with NSR (n = 12). The mRNA expression levels of Kir2.1 was determined in right atrial appendages from CAF (n = 19) and NSR (n = 18) by semiquantitative reverse-transcription polymerase chain reaction (RT-PCR).
RESULTThe average resting membrane potentials were similar between CAF and NSR (-78.95 mV +/- 4.67 mV and -70.22 mV +/- 11.08 mV, P>0.05). I(k1) density in single myocyte significantly increased at hyperpolarized potential level (-100 mV) in CAF compared to that in NSR (-9.59 pA/pF +/- 2.47 pA/pF vs. -5.58 pA/pF +/- 2.52 pA/pF, P<0.01). The mRNA level of Kir2.1 was also significantly higher in CAF than that of NSR (0.50+/-0.16 vs. 0.34+/-0.09, P<0.05).
CONCLUSIONThe data suggest that Kir2.1 up-regulation and I(k1) current increase might contribute to the electrical remodeling in CAF patients.
Atrial Fibrillation ; genetics ; metabolism ; physiopathology ; Gene Expression ; Humans ; Myocytes, Cardiac ; metabolism ; physiology ; Patch-Clamp Techniques ; Potassium Channels, Inwardly Rectifying ; genetics ; metabolism ; RNA, Messenger ; genetics